You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlahqr.f 20 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. *> \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAHQR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  22. * ILOZ, IHIZ, Z, LDZ, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  26. * LOGICAL WANTT, WANTZ
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DLAHQR is an auxiliary routine called by DHSEQR to update the
  39. *> eigenvalues and Schur decomposition already computed by DHSEQR, by
  40. *> dealing with the Hessenberg submatrix in rows and columns ILO to
  41. *> IHI.
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] WANTT
  48. *> \verbatim
  49. *> WANTT is LOGICAL
  50. *> = .TRUE. : the full Schur form T is required;
  51. *> = .FALSE.: only eigenvalues are required.
  52. *> \endverbatim
  53. *>
  54. *> \param[in] WANTZ
  55. *> \verbatim
  56. *> WANTZ is LOGICAL
  57. *> = .TRUE. : the matrix of Schur vectors Z is required;
  58. *> = .FALSE.: Schur vectors are not required.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix H. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] ILO
  68. *> \verbatim
  69. *> ILO is INTEGER
  70. *> \endverbatim
  71. *>
  72. *> \param[in] IHI
  73. *> \verbatim
  74. *> IHI is INTEGER
  75. *> It is assumed that H is already upper quasi-triangular in
  76. *> rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
  77. *> ILO = 1). DLAHQR works primarily with the Hessenberg
  78. *> submatrix in rows and columns ILO to IHI, but applies
  79. *> transformations to all of H if WANTT is .TRUE..
  80. *> 1 <= ILO <= max(1,IHI); IHI <= N.
  81. *> \endverbatim
  82. *>
  83. *> \param[in,out] H
  84. *> \verbatim
  85. *> H is DOUBLE PRECISION array, dimension (LDH,N)
  86. *> On entry, the upper Hessenberg matrix H.
  87. *> On exit, if INFO is zero and if WANTT is .TRUE., H is upper
  88. *> quasi-triangular in rows and columns ILO:IHI, with any
  89. *> 2-by-2 diagonal blocks in standard form. If INFO is zero
  90. *> and WANTT is .FALSE., the contents of H are unspecified on
  91. *> exit. The output state of H if INFO is nonzero is given
  92. *> below under the description of INFO.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDH
  96. *> \verbatim
  97. *> LDH is INTEGER
  98. *> The leading dimension of the array H. LDH >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[out] WR
  102. *> \verbatim
  103. *> WR is DOUBLE PRECISION array, dimension (N)
  104. *> \endverbatim
  105. *>
  106. *> \param[out] WI
  107. *> \verbatim
  108. *> WI is DOUBLE PRECISION array, dimension (N)
  109. *> The real and imaginary parts, respectively, of the computed
  110. *> eigenvalues ILO to IHI are stored in the corresponding
  111. *> elements of WR and WI. If two eigenvalues are computed as a
  112. *> complex conjugate pair, they are stored in consecutive
  113. *> elements of WR and WI, say the i-th and (i+1)th, with
  114. *> WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
  115. *> eigenvalues are stored in the same order as on the diagonal
  116. *> of the Schur form returned in H, with WR(i) = H(i,i), and, if
  117. *> H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
  118. *> WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] ILOZ
  122. *> \verbatim
  123. *> ILOZ is INTEGER
  124. *> \endverbatim
  125. *>
  126. *> \param[in] IHIZ
  127. *> \verbatim
  128. *> IHIZ is INTEGER
  129. *> Specify the rows of Z to which transformations must be
  130. *> applied if WANTZ is .TRUE..
  131. *> 1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
  132. *> \endverbatim
  133. *>
  134. *> \param[in,out] Z
  135. *> \verbatim
  136. *> Z is DOUBLE PRECISION array, dimension (LDZ,N)
  137. *> If WANTZ is .TRUE., on entry Z must contain the current
  138. *> matrix Z of transformations accumulated by DHSEQR, and on
  139. *> exit Z has been updated; transformations are applied only to
  140. *> the submatrix Z(ILOZ:IHIZ,ILO:IHI).
  141. *> If WANTZ is .FALSE., Z is not referenced.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] LDZ
  145. *> \verbatim
  146. *> LDZ is INTEGER
  147. *> The leading dimension of the array Z. LDZ >= max(1,N).
  148. *> \endverbatim
  149. *>
  150. *> \param[out] INFO
  151. *> \verbatim
  152. *> INFO is INTEGER
  153. *> = 0: successful exit
  154. *> > 0: If INFO = i, DLAHQR failed to compute all the
  155. *> eigenvalues ILO to IHI in a total of 30 iterations
  156. *> per eigenvalue; elements i+1:ihi of WR and WI
  157. *> contain those eigenvalues which have been
  158. *> successfully computed.
  159. *>
  160. *> If INFO > 0 and WANTT is .FALSE., then on exit,
  161. *> the remaining unconverged eigenvalues are the
  162. *> eigenvalues of the upper Hessenberg matrix rows
  163. *> and columns ILO through INFO of the final, output
  164. *> value of H.
  165. *>
  166. *> If INFO > 0 and WANTT is .TRUE., then on exit
  167. *> (*) (initial value of H)*U = U*(final value of H)
  168. *> where U is an orthogonal matrix. The final
  169. *> value of H is upper Hessenberg and triangular in
  170. *> rows and columns INFO+1 through IHI.
  171. *>
  172. *> If INFO > 0 and WANTZ is .TRUE., then on exit
  173. *> (final value of Z) = (initial value of Z)*U
  174. *> where U is the orthogonal matrix in (*)
  175. *> (regardless of the value of WANTT.)
  176. *> \endverbatim
  177. *
  178. * Authors:
  179. * ========
  180. *
  181. *> \author Univ. of Tennessee
  182. *> \author Univ. of California Berkeley
  183. *> \author Univ. of Colorado Denver
  184. *> \author NAG Ltd.
  185. *
  186. *> \date December 2016
  187. *
  188. *> \ingroup doubleOTHERauxiliary
  189. *
  190. *> \par Further Details:
  191. * =====================
  192. *>
  193. *> \verbatim
  194. *>
  195. *> 02-96 Based on modifications by
  196. *> David Day, Sandia National Laboratory, USA
  197. *>
  198. *> 12-04 Further modifications by
  199. *> Ralph Byers, University of Kansas, USA
  200. *> This is a modified version of DLAHQR from LAPACK version 3.0.
  201. *> It is (1) more robust against overflow and underflow and
  202. *> (2) adopts the more conservative Ahues & Tisseur stopping
  203. *> criterion (LAWN 122, 1997).
  204. *> \endverbatim
  205. *>
  206. * =====================================================================
  207. SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
  208. $ ILOZ, IHIZ, Z, LDZ, INFO )
  209. *
  210. * -- LAPACK auxiliary routine (version 3.7.0) --
  211. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  212. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213. * December 2016
  214. *
  215. * .. Scalar Arguments ..
  216. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
  217. LOGICAL WANTT, WANTZ
  218. * ..
  219. * .. Array Arguments ..
  220. DOUBLE PRECISION H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
  221. * ..
  222. *
  223. * =========================================================
  224. *
  225. * .. Parameters ..
  226. DOUBLE PRECISION ZERO, ONE, TWO
  227. PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
  228. DOUBLE PRECISION DAT1, DAT2
  229. PARAMETER ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
  230. * ..
  231. * .. Local Scalars ..
  232. DOUBLE PRECISION AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
  233. $ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
  234. $ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
  235. $ ULP, V2, V3
  236. INTEGER I, I1, I2, ITS, ITMAX, J, K, L, M, NH, NR, NZ
  237. * ..
  238. * .. Local Arrays ..
  239. DOUBLE PRECISION V( 3 )
  240. * ..
  241. * .. External Functions ..
  242. DOUBLE PRECISION DLAMCH
  243. EXTERNAL DLAMCH
  244. * ..
  245. * .. External Subroutines ..
  246. EXTERNAL DCOPY, DLABAD, DLANV2, DLARFG, DROT
  247. * ..
  248. * .. Intrinsic Functions ..
  249. INTRINSIC ABS, DBLE, MAX, MIN, SQRT
  250. * ..
  251. * .. Executable Statements ..
  252. *
  253. INFO = 0
  254. *
  255. * Quick return if possible
  256. *
  257. IF( N.EQ.0 )
  258. $ RETURN
  259. IF( ILO.EQ.IHI ) THEN
  260. WR( ILO ) = H( ILO, ILO )
  261. WI( ILO ) = ZERO
  262. RETURN
  263. END IF
  264. *
  265. * ==== clear out the trash ====
  266. DO 10 J = ILO, IHI - 3
  267. H( J+2, J ) = ZERO
  268. H( J+3, J ) = ZERO
  269. 10 CONTINUE
  270. IF( ILO.LE.IHI-2 )
  271. $ H( IHI, IHI-2 ) = ZERO
  272. *
  273. NH = IHI - ILO + 1
  274. NZ = IHIZ - ILOZ + 1
  275. *
  276. * Set machine-dependent constants for the stopping criterion.
  277. *
  278. SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  279. SAFMAX = ONE / SAFMIN
  280. CALL DLABAD( SAFMIN, SAFMAX )
  281. ULP = DLAMCH( 'PRECISION' )
  282. SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
  283. *
  284. * I1 and I2 are the indices of the first row and last column of H
  285. * to which transformations must be applied. If eigenvalues only are
  286. * being computed, I1 and I2 are set inside the main loop.
  287. *
  288. IF( WANTT ) THEN
  289. I1 = 1
  290. I2 = N
  291. END IF
  292. *
  293. * ITMAX is the total number of QR iterations allowed.
  294. *
  295. ITMAX = 30 * MAX( 10, NH )
  296. *
  297. * The main loop begins here. I is the loop index and decreases from
  298. * IHI to ILO in steps of 1 or 2. Each iteration of the loop works
  299. * with the active submatrix in rows and columns L to I.
  300. * Eigenvalues I+1 to IHI have already converged. Either L = ILO or
  301. * H(L,L-1) is negligible so that the matrix splits.
  302. *
  303. I = IHI
  304. 20 CONTINUE
  305. L = ILO
  306. IF( I.LT.ILO )
  307. $ GO TO 160
  308. *
  309. * Perform QR iterations on rows and columns ILO to I until a
  310. * submatrix of order 1 or 2 splits off at the bottom because a
  311. * subdiagonal element has become negligible.
  312. *
  313. DO 140 ITS = 0, ITMAX
  314. *
  315. * Look for a single small subdiagonal element.
  316. *
  317. DO 30 K = I, L + 1, -1
  318. IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
  319. $ GO TO 40
  320. TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
  321. IF( TST.EQ.ZERO ) THEN
  322. IF( K-2.GE.ILO )
  323. $ TST = TST + ABS( H( K-1, K-2 ) )
  324. IF( K+1.LE.IHI )
  325. $ TST = TST + ABS( H( K+1, K ) )
  326. END IF
  327. * ==== The following is a conservative small subdiagonal
  328. * . deflation criterion due to Ahues & Tisseur (LAWN 122,
  329. * . 1997). It has better mathematical foundation and
  330. * . improves accuracy in some cases. ====
  331. IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
  332. AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  333. BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
  334. AA = MAX( ABS( H( K, K ) ),
  335. $ ABS( H( K-1, K-1 )-H( K, K ) ) )
  336. BB = MIN( ABS( H( K, K ) ),
  337. $ ABS( H( K-1, K-1 )-H( K, K ) ) )
  338. S = AA + AB
  339. IF( BA*( AB / S ).LE.MAX( SMLNUM,
  340. $ ULP*( BB*( AA / S ) ) ) )GO TO 40
  341. END IF
  342. 30 CONTINUE
  343. 40 CONTINUE
  344. L = K
  345. IF( L.GT.ILO ) THEN
  346. *
  347. * H(L,L-1) is negligible
  348. *
  349. H( L, L-1 ) = ZERO
  350. END IF
  351. *
  352. * Exit from loop if a submatrix of order 1 or 2 has split off.
  353. *
  354. IF( L.GE.I-1 )
  355. $ GO TO 150
  356. *
  357. * Now the active submatrix is in rows and columns L to I. If
  358. * eigenvalues only are being computed, only the active submatrix
  359. * need be transformed.
  360. *
  361. IF( .NOT.WANTT ) THEN
  362. I1 = L
  363. I2 = I
  364. END IF
  365. *
  366. IF( ITS.EQ.10 ) THEN
  367. *
  368. * Exceptional shift.
  369. *
  370. S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
  371. H11 = DAT1*S + H( L, L )
  372. H12 = DAT2*S
  373. H21 = S
  374. H22 = H11
  375. ELSE IF( ITS.EQ.20 ) THEN
  376. *
  377. * Exceptional shift.
  378. *
  379. S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
  380. H11 = DAT1*S + H( I, I )
  381. H12 = DAT2*S
  382. H21 = S
  383. H22 = H11
  384. ELSE
  385. *
  386. * Prepare to use Francis' double shift
  387. * (i.e. 2nd degree generalized Rayleigh quotient)
  388. *
  389. H11 = H( I-1, I-1 )
  390. H21 = H( I, I-1 )
  391. H12 = H( I-1, I )
  392. H22 = H( I, I )
  393. END IF
  394. S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
  395. IF( S.EQ.ZERO ) THEN
  396. RT1R = ZERO
  397. RT1I = ZERO
  398. RT2R = ZERO
  399. RT2I = ZERO
  400. ELSE
  401. H11 = H11 / S
  402. H21 = H21 / S
  403. H12 = H12 / S
  404. H22 = H22 / S
  405. TR = ( H11+H22 ) / TWO
  406. DET = ( H11-TR )*( H22-TR ) - H12*H21
  407. RTDISC = SQRT( ABS( DET ) )
  408. IF( DET.GE.ZERO ) THEN
  409. *
  410. * ==== complex conjugate shifts ====
  411. *
  412. RT1R = TR*S
  413. RT2R = RT1R
  414. RT1I = RTDISC*S
  415. RT2I = -RT1I
  416. ELSE
  417. *
  418. * ==== real shifts (use only one of them) ====
  419. *
  420. RT1R = TR + RTDISC
  421. RT2R = TR - RTDISC
  422. IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
  423. RT1R = RT1R*S
  424. RT2R = RT1R
  425. ELSE
  426. RT2R = RT2R*S
  427. RT1R = RT2R
  428. END IF
  429. RT1I = ZERO
  430. RT2I = ZERO
  431. END IF
  432. END IF
  433. *
  434. * Look for two consecutive small subdiagonal elements.
  435. *
  436. DO 50 M = I - 2, L, -1
  437. * Determine the effect of starting the double-shift QR
  438. * iteration at row M, and see if this would make H(M,M-1)
  439. * negligible. (The following uses scaling to avoid
  440. * overflows and most underflows.)
  441. *
  442. H21S = H( M+1, M )
  443. S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
  444. H21S = H( M+1, M ) / S
  445. V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
  446. $ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
  447. V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
  448. V( 3 ) = H21S*H( M+2, M+1 )
  449. S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
  450. V( 1 ) = V( 1 ) / S
  451. V( 2 ) = V( 2 ) / S
  452. V( 3 ) = V( 3 ) / S
  453. IF( M.EQ.L )
  454. $ GO TO 60
  455. IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
  456. $ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
  457. $ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
  458. 50 CONTINUE
  459. 60 CONTINUE
  460. *
  461. * Double-shift QR step
  462. *
  463. DO 130 K = M, I - 1
  464. *
  465. * The first iteration of this loop determines a reflection G
  466. * from the vector V and applies it from left and right to H,
  467. * thus creating a nonzero bulge below the subdiagonal.
  468. *
  469. * Each subsequent iteration determines a reflection G to
  470. * restore the Hessenberg form in the (K-1)th column, and thus
  471. * chases the bulge one step toward the bottom of the active
  472. * submatrix. NR is the order of G.
  473. *
  474. NR = MIN( 3, I-K+1 )
  475. IF( K.GT.M )
  476. $ CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
  477. CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
  478. IF( K.GT.M ) THEN
  479. H( K, K-1 ) = V( 1 )
  480. H( K+1, K-1 ) = ZERO
  481. IF( K.LT.I-1 )
  482. $ H( K+2, K-1 ) = ZERO
  483. ELSE IF( M.GT.L ) THEN
  484. * ==== Use the following instead of
  485. * . H( K, K-1 ) = -H( K, K-1 ) to
  486. * . avoid a bug when v(2) and v(3)
  487. * . underflow. ====
  488. H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
  489. END IF
  490. V2 = V( 2 )
  491. T2 = T1*V2
  492. IF( NR.EQ.3 ) THEN
  493. V3 = V( 3 )
  494. T3 = T1*V3
  495. *
  496. * Apply G from the left to transform the rows of the matrix
  497. * in columns K to I2.
  498. *
  499. DO 70 J = K, I2
  500. SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
  501. H( K, J ) = H( K, J ) - SUM*T1
  502. H( K+1, J ) = H( K+1, J ) - SUM*T2
  503. H( K+2, J ) = H( K+2, J ) - SUM*T3
  504. 70 CONTINUE
  505. *
  506. * Apply G from the right to transform the columns of the
  507. * matrix in rows I1 to min(K+3,I).
  508. *
  509. DO 80 J = I1, MIN( K+3, I )
  510. SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
  511. H( J, K ) = H( J, K ) - SUM*T1
  512. H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  513. H( J, K+2 ) = H( J, K+2 ) - SUM*T3
  514. 80 CONTINUE
  515. *
  516. IF( WANTZ ) THEN
  517. *
  518. * Accumulate transformations in the matrix Z
  519. *
  520. DO 90 J = ILOZ, IHIZ
  521. SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
  522. Z( J, K ) = Z( J, K ) - SUM*T1
  523. Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  524. Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
  525. 90 CONTINUE
  526. END IF
  527. ELSE IF( NR.EQ.2 ) THEN
  528. *
  529. * Apply G from the left to transform the rows of the matrix
  530. * in columns K to I2.
  531. *
  532. DO 100 J = K, I2
  533. SUM = H( K, J ) + V2*H( K+1, J )
  534. H( K, J ) = H( K, J ) - SUM*T1
  535. H( K+1, J ) = H( K+1, J ) - SUM*T2
  536. 100 CONTINUE
  537. *
  538. * Apply G from the right to transform the columns of the
  539. * matrix in rows I1 to min(K+3,I).
  540. *
  541. DO 110 J = I1, I
  542. SUM = H( J, K ) + V2*H( J, K+1 )
  543. H( J, K ) = H( J, K ) - SUM*T1
  544. H( J, K+1 ) = H( J, K+1 ) - SUM*T2
  545. 110 CONTINUE
  546. *
  547. IF( WANTZ ) THEN
  548. *
  549. * Accumulate transformations in the matrix Z
  550. *
  551. DO 120 J = ILOZ, IHIZ
  552. SUM = Z( J, K ) + V2*Z( J, K+1 )
  553. Z( J, K ) = Z( J, K ) - SUM*T1
  554. Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
  555. 120 CONTINUE
  556. END IF
  557. END IF
  558. 130 CONTINUE
  559. *
  560. 140 CONTINUE
  561. *
  562. * Failure to converge in remaining number of iterations
  563. *
  564. INFO = I
  565. RETURN
  566. *
  567. 150 CONTINUE
  568. *
  569. IF( L.EQ.I ) THEN
  570. *
  571. * H(I,I-1) is negligible: one eigenvalue has converged.
  572. *
  573. WR( I ) = H( I, I )
  574. WI( I ) = ZERO
  575. ELSE IF( L.EQ.I-1 ) THEN
  576. *
  577. * H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
  578. *
  579. * Transform the 2-by-2 submatrix to standard Schur form,
  580. * and compute and store the eigenvalues.
  581. *
  582. CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
  583. $ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
  584. $ CS, SN )
  585. *
  586. IF( WANTT ) THEN
  587. *
  588. * Apply the transformation to the rest of H.
  589. *
  590. IF( I2.GT.I )
  591. $ CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
  592. $ CS, SN )
  593. CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
  594. END IF
  595. IF( WANTZ ) THEN
  596. *
  597. * Apply the transformation to Z.
  598. *
  599. CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
  600. END IF
  601. END IF
  602. *
  603. * return to start of the main loop with new value of I.
  604. *
  605. I = L - 1
  606. GO TO 20
  607. *
  608. 160 CONTINUE
  609. RETURN
  610. *
  611. * End of DLAHQR
  612. *
  613. END