You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztpmvf.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. SUBROUTINE ZTPMVF( UPLO, TRANS, DIAG, N, AP, X, INCX )
  2. * .. Scalar Arguments ..
  3. INTEGER INCX, N
  4. CHARACTER*1 DIAG, TRANS, UPLO
  5. * .. Array Arguments ..
  6. COMPLEX*16 AP( * ), X( * )
  7. * ..
  8. *
  9. * Purpose
  10. * =======
  11. *
  12. * ZTPMV performs one of the matrix-vector operations
  13. *
  14. * x := A*x, or x := A'*x, or x := conjg( A' )*x,
  15. *
  16. * where x is an n element vector and A is an n by n unit, or non-unit,
  17. * upper or lower triangular matrix, supplied in packed form.
  18. *
  19. * Parameters
  20. * ==========
  21. *
  22. * UPLO - CHARACTER*1.
  23. * On entry, UPLO specifies whether the matrix is an upper or
  24. * lower triangular matrix as follows:
  25. *
  26. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  27. *
  28. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  29. *
  30. * Unchanged on exit.
  31. *
  32. * TRANS - CHARACTER*1.
  33. * On entry, TRANS specifies the operation to be performed as
  34. * follows:
  35. *
  36. * TRANS = 'N' or 'n' x := A*x.
  37. *
  38. * TRANS = 'T' or 't' x := A'*x.
  39. *
  40. * TRANS = 'C' or 'c' x := conjg( A' )*x.
  41. *
  42. * Unchanged on exit.
  43. *
  44. * DIAG - CHARACTER*1.
  45. * On entry, DIAG specifies whether or not A is unit
  46. * triangular as follows:
  47. *
  48. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  49. *
  50. * DIAG = 'N' or 'n' A is not assumed to be unit
  51. * triangular.
  52. *
  53. * Unchanged on exit.
  54. *
  55. * N - INTEGER.
  56. * On entry, N specifies the order of the matrix A.
  57. * N must be at least zero.
  58. * Unchanged on exit.
  59. *
  60. * AP - COMPLEX*16 array of DIMENSION at least
  61. * ( ( n*( n + 1 ) )/2 ).
  62. * Before entry with UPLO = 'U' or 'u', the array AP must
  63. * contain the upper triangular matrix packed sequentially,
  64. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  65. * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
  66. * respectively, and so on.
  67. * Before entry with UPLO = 'L' or 'l', the array AP must
  68. * contain the lower triangular matrix packed sequentially,
  69. * column by column, so that AP( 1 ) contains a( 1, 1 ),
  70. * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
  71. * respectively, and so on.
  72. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  73. * A are not referenced, but are assumed to be unity.
  74. * Unchanged on exit.
  75. *
  76. * X - COMPLEX*16 array of dimension at least
  77. * ( 1 + ( n - 1 )*abs( INCX ) ).
  78. * Before entry, the incremented array X must contain the n
  79. * element vector x. On exit, X is overwritten with the
  80. * tranformed vector x.
  81. *
  82. * INCX - INTEGER.
  83. * On entry, INCX specifies the increment for the elements of
  84. * X. INCX must not be zero.
  85. * Unchanged on exit.
  86. *
  87. *
  88. * Level 2 Blas routine.
  89. *
  90. * -- Written on 22-October-1986.
  91. * Jack Dongarra, Argonne National Lab.
  92. * Jeremy Du Croz, Nag Central Office.
  93. * Sven Hammarling, Nag Central Office.
  94. * Richard Hanson, Sandia National Labs.
  95. *
  96. *
  97. * .. Parameters ..
  98. COMPLEX*16 ZERO
  99. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  100. * .. Local Scalars ..
  101. COMPLEX*16 TEMP
  102. INTEGER I, INFO, IX, J, JX, K, KK, KX
  103. LOGICAL NOCONJ, NOUNIT
  104. * .. External Functions ..
  105. LOGICAL LSAME
  106. EXTERNAL LSAME
  107. * .. External Subroutines ..
  108. EXTERNAL XERBLA
  109. * .. Intrinsic Functions ..
  110. INTRINSIC DCONJG
  111. * ..
  112. * .. Executable Statements ..
  113. *
  114. * Test the input parameters.
  115. *
  116. INFO = 0
  117. IF ( .NOT.LSAME( UPLO , 'U' ).AND.
  118. $ .NOT.LSAME( UPLO , 'L' ) )THEN
  119. INFO = 1
  120. ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
  121. $ .NOT.LSAME( TRANS, 'T' ).AND.
  122. $ .NOT.LSAME( TRANS, 'R' ).AND.
  123. $ .NOT.LSAME( TRANS, 'C' ) )THEN
  124. INFO = 2
  125. ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
  126. $ .NOT.LSAME( DIAG , 'N' ) )THEN
  127. INFO = 3
  128. ELSE IF( N.LT.0 )THEN
  129. INFO = 4
  130. ELSE IF( INCX.EQ.0 )THEN
  131. INFO = 7
  132. END IF
  133. IF( INFO.NE.0 )THEN
  134. CALL XERBLA( 'ZTPMVF', INFO )
  135. RETURN
  136. END IF
  137. *
  138. * Quick return if possible.
  139. *
  140. IF( N.EQ.0 )
  141. $ RETURN
  142. *
  143. NOCONJ = LSAME( TRANS, 'N' ) .OR. LSAME( TRANS, 'T' )
  144. NOUNIT = LSAME( DIAG , 'N' )
  145. *
  146. * Set up the start point in X if the increment is not unity. This
  147. * will be ( N - 1 )*INCX too small for descending loops.
  148. *
  149. IF( INCX.LE.0 )THEN
  150. KX = 1 - ( N - 1 )*INCX
  151. ELSE IF( INCX.NE.1 )THEN
  152. KX = 1
  153. END IF
  154. *
  155. * Start the operations. In this version the elements of AP are
  156. * accessed sequentially with one pass through AP.
  157. *
  158. IF( LSAME( TRANS, 'N' ).OR.LSAME( TRANS, 'R' ))THEN
  159. *
  160. * Form x:= A*x.
  161. *
  162. IF( LSAME( UPLO, 'U' ) )THEN
  163. KK = 1
  164. IF( INCX.EQ.1 )THEN
  165. DO 20, J = 1, N
  166. IF( X( J ).NE.ZERO )THEN
  167. TEMP = X( J )
  168. K = KK
  169. DO 10, I = 1, J - 1
  170. IF( NOCONJ )THEN
  171. X( I ) = X( I ) + TEMP*AP( K )
  172. ELSE
  173. X( I ) = X( I ) + TEMP*DCONJG(AP( K ))
  174. END IF
  175. K = K + 1
  176. 10 CONTINUE
  177. IF( NOCONJ )THEN
  178. IF( NOUNIT )
  179. $ X( J ) = X( J )*AP( KK + J - 1 )
  180. ELSE
  181. IF( NOUNIT )
  182. $ X( J ) = X( J )*DCONJG(AP( KK + J-1))
  183. END IF
  184. END IF
  185. KK = KK + J
  186. 20 CONTINUE
  187. ELSE
  188. JX = KX
  189. DO 40, J = 1, N
  190. IF( X( JX ).NE.ZERO )THEN
  191. TEMP = X( JX )
  192. IX = KX
  193. DO 30, K = KK, KK + J - 2
  194. IF( NOCONJ )THEN
  195. X( IX ) = X( IX ) + TEMP*AP( K )
  196. ELSE
  197. X( IX ) = X( IX ) + TEMP*DCONJG(AP(K))
  198. END IF
  199. IX = IX + INCX
  200. 30 CONTINUE
  201. IF( NOCONJ )THEN
  202. IF( NOUNIT )
  203. $ X( JX ) = X( JX )*AP( KK + J - 1 )
  204. ELSE
  205. IF( NOUNIT )
  206. $ X( JX ) = X( JX )*DCONJG(AP( KK + J-1))
  207. END IF
  208. END IF
  209. JX = JX + INCX
  210. KK = KK + J
  211. 40 CONTINUE
  212. END IF
  213. ELSE
  214. KK = ( N*( N + 1 ) )/2
  215. IF( INCX.EQ.1 )THEN
  216. DO 60, J = N, 1, -1
  217. IF( X( J ).NE.ZERO )THEN
  218. TEMP = X( J )
  219. K = KK
  220. DO 50, I = N, J + 1, -1
  221. IF( NOCONJ )THEN
  222. X( I ) = X( I ) + TEMP*AP( K )
  223. ELSE
  224. X( I ) = X( I ) + TEMP*DCONJG(AP( K ))
  225. END IF
  226. K = K - 1
  227. 50 CONTINUE
  228. IF( NOCONJ )THEN
  229. IF( NOUNIT )
  230. $ X( J ) = X( J )*AP( KK - N + J )
  231. ELSE
  232. IF( NOUNIT )
  233. $ X( J ) = X( J )*DCONJG(AP(KK - N+J))
  234. END IF
  235. END IF
  236. KK = KK - ( N - J + 1 )
  237. 60 CONTINUE
  238. ELSE
  239. KX = KX + ( N - 1 )*INCX
  240. JX = KX
  241. DO 80, J = N, 1, -1
  242. IF( X( JX ).NE.ZERO )THEN
  243. TEMP = X( JX )
  244. IX = KX
  245. DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1
  246. IF( NOCONJ )THEN
  247. X( IX ) = X( IX ) + TEMP*AP( K )
  248. ELSE
  249. X( IX ) = X( IX ) + TEMP*DCONJG(AP(K))
  250. ENDIF
  251. IX = IX - INCX
  252. 70 CONTINUE
  253. IF( NOCONJ )THEN
  254. IF( NOUNIT )
  255. $ X( JX ) = X( JX )*AP( KK - N + J )
  256. ELSE
  257. IF( NOUNIT )
  258. $ X( JX ) = X( JX )*DCONJG(AP(KK-N+J))
  259. ENDIF
  260. END IF
  261. JX = JX - INCX
  262. KK = KK - ( N - J + 1 )
  263. 80 CONTINUE
  264. END IF
  265. END IF
  266. ELSE
  267. *
  268. * Form x := A'*x or x := conjg( A' )*x.
  269. *
  270. IF( LSAME( UPLO, 'U' ) )THEN
  271. KK = ( N*( N + 1 ) )/2
  272. IF( INCX.EQ.1 )THEN
  273. DO 110, J = N, 1, -1
  274. TEMP = X( J )
  275. K = KK - 1
  276. IF( NOCONJ )THEN
  277. IF( NOUNIT )
  278. $ TEMP = TEMP*AP( KK )
  279. DO 90, I = J - 1, 1, -1
  280. TEMP = TEMP + AP( K )*X( I )
  281. K = K - 1
  282. 90 CONTINUE
  283. ELSE
  284. IF( NOUNIT )
  285. $ TEMP = TEMP*DCONJG( AP( KK ) )
  286. DO 100, I = J - 1, 1, -1
  287. TEMP = TEMP + DCONJG( AP( K ) )*X( I )
  288. K = K - 1
  289. 100 CONTINUE
  290. END IF
  291. X( J ) = TEMP
  292. KK = KK - J
  293. 110 CONTINUE
  294. ELSE
  295. JX = KX + ( N - 1 )*INCX
  296. DO 140, J = N, 1, -1
  297. TEMP = X( JX )
  298. IX = JX
  299. IF( NOCONJ )THEN
  300. IF( NOUNIT )
  301. $ TEMP = TEMP*AP( KK )
  302. DO 120, K = KK - 1, KK - J + 1, -1
  303. IX = IX - INCX
  304. TEMP = TEMP + AP( K )*X( IX )
  305. 120 CONTINUE
  306. ELSE
  307. IF( NOUNIT )
  308. $ TEMP = TEMP*DCONJG( AP( KK ) )
  309. DO 130, K = KK - 1, KK - J + 1, -1
  310. IX = IX - INCX
  311. TEMP = TEMP + DCONJG( AP( K ) )*X( IX )
  312. 130 CONTINUE
  313. END IF
  314. X( JX ) = TEMP
  315. JX = JX - INCX
  316. KK = KK - J
  317. 140 CONTINUE
  318. END IF
  319. ELSE
  320. KK = 1
  321. IF( INCX.EQ.1 )THEN
  322. DO 170, J = 1, N
  323. TEMP = X( J )
  324. K = KK + 1
  325. IF( NOCONJ )THEN
  326. IF( NOUNIT )
  327. $ TEMP = TEMP*AP( KK )
  328. DO 150, I = J + 1, N
  329. TEMP = TEMP + AP( K )*X( I )
  330. K = K + 1
  331. 150 CONTINUE
  332. ELSE
  333. IF( NOUNIT )
  334. $ TEMP = TEMP*DCONJG( AP( KK ) )
  335. DO 160, I = J + 1, N
  336. TEMP = TEMP + DCONJG( AP( K ) )*X( I )
  337. K = K + 1
  338. 160 CONTINUE
  339. END IF
  340. X( J ) = TEMP
  341. KK = KK + ( N - J + 1 )
  342. 170 CONTINUE
  343. ELSE
  344. JX = KX
  345. DO 200, J = 1, N
  346. TEMP = X( JX )
  347. IX = JX
  348. IF( NOCONJ )THEN
  349. IF( NOUNIT )
  350. $ TEMP = TEMP*AP( KK )
  351. DO 180, K = KK + 1, KK + N - J
  352. IX = IX + INCX
  353. TEMP = TEMP + AP( K )*X( IX )
  354. 180 CONTINUE
  355. ELSE
  356. IF( NOUNIT )
  357. $ TEMP = TEMP*DCONJG( AP( KK ) )
  358. DO 190, K = KK + 1, KK + N - J
  359. IX = IX + INCX
  360. TEMP = TEMP + DCONJG( AP( K ) )*X( IX )
  361. 190 CONTINUE
  362. END IF
  363. X( JX ) = TEMP
  364. JX = JX + INCX
  365. KK = KK + ( N - J + 1 )
  366. 200 CONTINUE
  367. END IF
  368. END IF
  369. END IF
  370. *
  371. RETURN
  372. *
  373. * End of ZTPMV .
  374. *
  375. END