You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgemv_t_4.c 32 kB

6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. /***************************************************************************
  2. Copyright (c) 2018, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include "common.h"
  28. #define NBMAX 4096
  29. #if defined(__VEC__) || defined(__ALTIVEC__)
  30. #define HAVE_KERNEL_4x4_VEC 1
  31. #define HAVE_KERNEL_4x2_VEC 1
  32. #define HAVE_KERNEL_4x1_VEC 1
  33. #endif
  34. #if defined(HAVE_KERNEL_4x4_VEC) || defined(HAVE_KERNEL_4x2_VEC) || defined(HAVE_KERNEL_4x1_VEC)
  35. #include <altivec.h>
  36. #endif
  37. #ifdef HAVE_KERNEL_4x4_VEC_ASM
  38. #elif HAVE_KERNEL_4x4_VEC
  39. #if defined(POWER10)
  40. typedef __vector unsigned char vec_t;
  41. typedef FLOAT v4sf_t __attribute__ ((vector_size (16)));
  42. static void zgemv_kernel_4x4(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  43. BLASLONG i;
  44. FLOAT *a0, *a1, *a2, *a3;
  45. a0 = ap;
  46. a1 = ap + lda;
  47. a2 = a1 + lda;
  48. a3 = a2 + lda;
  49. __vector_quad acc0, acc1, acc2, acc3;;
  50. __vector_quad acc4, acc5, acc6, acc7;
  51. v4sf_t result[4];
  52. __vector_pair *Va0, *Va1, *Va2, *Va3;
  53. i = 0;
  54. n = n << 1;
  55. __builtin_mma_xxsetaccz (&acc0);
  56. __builtin_mma_xxsetaccz (&acc1);
  57. __builtin_mma_xxsetaccz (&acc2);
  58. __builtin_mma_xxsetaccz (&acc3);
  59. __builtin_mma_xxsetaccz (&acc4);
  60. __builtin_mma_xxsetaccz (&acc5);
  61. __builtin_mma_xxsetaccz (&acc6);
  62. __builtin_mma_xxsetaccz (&acc7);
  63. while (i < n) {
  64. vec_t *rx = (vec_t *) & x[i];
  65. Va0 = ((__vector_pair*)((void*)&a0[i]));
  66. Va1 = ((__vector_pair*)((void*)&a1[i]));
  67. Va2 = ((__vector_pair*)((void*)&a2[i]));
  68. Va3 = ((__vector_pair*)((void*)&a3[i]));
  69. __builtin_mma_xvf64gerpp (&acc0, Va0[0], rx[0]);
  70. __builtin_mma_xvf64gerpp (&acc1, Va1[0], rx[0]);
  71. __builtin_mma_xvf64gerpp (&acc2, Va2[0], rx[0]);
  72. __builtin_mma_xvf64gerpp (&acc3, Va3[0], rx[0]);
  73. __builtin_mma_xvf64gerpp (&acc4, Va0[0], rx[1]);
  74. __builtin_mma_xvf64gerpp (&acc5, Va1[0], rx[1]);
  75. __builtin_mma_xvf64gerpp (&acc6, Va2[0], rx[1]);
  76. __builtin_mma_xvf64gerpp (&acc7, Va3[0], rx[1]);
  77. __builtin_mma_xvf64gerpp (&acc0, Va0[1], rx[2]);
  78. __builtin_mma_xvf64gerpp (&acc1, Va1[1], rx[2]);
  79. __builtin_mma_xvf64gerpp (&acc2, Va2[1], rx[2]);
  80. __builtin_mma_xvf64gerpp (&acc3, Va3[1], rx[2]);
  81. __builtin_mma_xvf64gerpp (&acc4, Va0[1], rx[3]);
  82. __builtin_mma_xvf64gerpp (&acc5, Va1[1], rx[3]);
  83. __builtin_mma_xvf64gerpp (&acc6, Va2[1], rx[3]);
  84. __builtin_mma_xvf64gerpp (&acc7, Va3[1], rx[3]);
  85. i += 8;
  86. }
  87. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  88. __builtin_mma_disassemble_acc ((void *)result, &acc0);
  89. register FLOAT temp_r0 = result[0][0] - result[1][1];
  90. register FLOAT temp_i0 = result[0][1] + result[1][0];
  91. __builtin_mma_disassemble_acc ((void *)result, &acc4);
  92. temp_r0 += result[2][0] - result[3][1];
  93. temp_i0 += result[2][1] + result[3][0];
  94. __builtin_mma_disassemble_acc ((void *)result, &acc1);
  95. register FLOAT temp_r1 = result[0][0] - result[1][1];
  96. register FLOAT temp_i1 = result[0][1] + result[1][0];
  97. __builtin_mma_disassemble_acc ((void *)result, &acc5);
  98. temp_r1 += result[2][0] - result[3][1];
  99. temp_i1 += result[2][1] + result[3][0];
  100. __builtin_mma_disassemble_acc ((void *)result, &acc2);
  101. register FLOAT temp_r2 = result[0][0] - result[1][1];
  102. register FLOAT temp_i2 = result[0][1] + result[1][0];
  103. __builtin_mma_disassemble_acc ((void *)result, &acc6);
  104. temp_r2 += result[2][0] - result[3][1];
  105. temp_i2 += result[2][1] + result[3][0];
  106. __builtin_mma_disassemble_acc ((void *)result, &acc3);
  107. register FLOAT temp_r3 = result[0][0] - result[1][1];
  108. register FLOAT temp_i3 = result[0][1] + result[1][0];
  109. __builtin_mma_disassemble_acc ((void *)result, &acc7);
  110. temp_r3 += result[2][0] - result[3][1];
  111. temp_i3 += result[2][1] + result[3][0];
  112. #else
  113. __builtin_mma_disassemble_acc ((void *)result, &acc0);
  114. register FLOAT temp_r0 = result[0][0] + result[1][1];
  115. register FLOAT temp_i0 = result[0][1] - result[1][0];
  116. __builtin_mma_disassemble_acc ((void *)result, &acc4);
  117. temp_r0 += result[2][0] + result[3][1];
  118. temp_i0 += result[2][1] - result[3][0];
  119. __builtin_mma_disassemble_acc ((void *)result, &acc1);
  120. register FLOAT temp_r1 = result[0][0] + result[1][1];
  121. register FLOAT temp_i1 = result[0][1] - result[1][0];
  122. __builtin_mma_disassemble_acc ((void *)result, &acc5);
  123. temp_r1 += result[2][0] + result[3][1];
  124. temp_i1 += result[2][1] - result[3][0];
  125. __builtin_mma_disassemble_acc ((void *)result, &acc2);
  126. register FLOAT temp_r2 = result[0][0] + result[1][1];
  127. register FLOAT temp_i2 = result[0][1] - result[1][0];
  128. __builtin_mma_disassemble_acc ((void *)result, &acc6);
  129. temp_r2 += result[2][0] + result[3][1];
  130. temp_i2 += result[2][1] - result[3][0];
  131. __builtin_mma_disassemble_acc ((void *)result, &acc3);
  132. register FLOAT temp_r3 = result[0][0] + result[1][1];
  133. register FLOAT temp_i3 = result[0][1] - result[1][0];
  134. __builtin_mma_disassemble_acc ((void *)result, &acc7);
  135. temp_r3 += result[2][0] + result[3][1];
  136. temp_i3 += result[2][1] - result[3][0];
  137. #endif
  138. #if !defined(XCONJ)
  139. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  140. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  141. y[2] += alpha_r * temp_r1 - alpha_i * temp_i1;
  142. y[3] += alpha_r * temp_i1 + alpha_i * temp_r1;
  143. y[4] += alpha_r * temp_r2 - alpha_i * temp_i2;
  144. y[5] += alpha_r * temp_i2 + alpha_i * temp_r2;
  145. y[6] += alpha_r * temp_r3 - alpha_i * temp_i3;
  146. y[7] += alpha_r * temp_i3 + alpha_i * temp_r3;
  147. #else
  148. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  149. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  150. y[2] += alpha_r * temp_r1 + alpha_i * temp_i1;
  151. y[3] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  152. y[4] += alpha_r * temp_r2 + alpha_i * temp_i2;
  153. y[5] -= alpha_r * temp_i2 - alpha_i * temp_r2;
  154. y[6] += alpha_r * temp_r3 + alpha_i * temp_i3;
  155. y[7] -= alpha_r * temp_i3 - alpha_i * temp_r3;
  156. #endif
  157. }
  158. #else
  159. static void zgemv_kernel_4x4(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  160. BLASLONG i;
  161. FLOAT *a0, *a1, *a2, *a3;
  162. a0 = ap;
  163. a1 = ap + lda;
  164. a2 = a1 + lda;
  165. a3 = a2 + lda;
  166. //p for positive(real*real,image*image) r for image (real*image,image*real)
  167. register __vector double vtemp0_p = {0.0, 0.0};
  168. register __vector double vtemp0_r = {0.0, 0.0};
  169. register __vector double vtemp1_p = {0.0, 0.0};
  170. register __vector double vtemp1_r = {0.0, 0.0};
  171. register __vector double vtemp2_p = {0.0, 0.0};
  172. register __vector double vtemp2_r = {0.0, 0.0};
  173. register __vector double vtemp3_p = {0.0, 0.0};
  174. register __vector double vtemp3_r = {0.0, 0.0};
  175. i = 0;
  176. n = n << 1;
  177. while (i < n) {
  178. register __vector double vx_0 = *(__vector double*) (&x[i]);
  179. register __vector double vx_1 = *(__vector double*) (&x[i + 2]);
  180. register __vector double vx_2 = *(__vector double*) (&x[i + 4]);
  181. register __vector double vx_3 = *(__vector double*) (&x[i + 6]);
  182. register __vector double va0 = *(__vector double*) (&a0[i]);
  183. register __vector double va0_1 = *(__vector double*) (&a0[i + 2]);
  184. register __vector double va0_2 = *(__vector double*) (&a0[i + 4]);
  185. register __vector double va0_3 = *(__vector double*) (&a0[i + 6]);
  186. register __vector double va1 = *(__vector double*) (&a1[i]);
  187. register __vector double va1_1 = *(__vector double*) (&a1[i + 2]);
  188. register __vector double va1_2 = *(__vector double*) (&a1[i + 4]);
  189. register __vector double va1_3 = *(__vector double*) (&a1[i + 6]);
  190. register __vector double va2 = *(__vector double*) (&a2[i]);
  191. register __vector double va2_1 = *(__vector double*) (&a2[i + 2]);
  192. register __vector double va2_2 = *(__vector double*) (&a2[i + 4]);
  193. register __vector double va2_3 = *(__vector double*) (&a2[i + 6]);
  194. register __vector double va3 = *(__vector double*) (&a3[i]);
  195. register __vector double va3_1 = *(__vector double*) (&a3[i + 2]);
  196. register __vector double va3_2 = *(__vector double*) (&a3[i + 4]);
  197. register __vector double va3_3 = *(__vector double*) (&a3[i + 6]);
  198. register __vector double vxr_0 = vec_xxpermdi(vx_0, vx_0, 2);
  199. register __vector double vxr_1 = vec_xxpermdi(vx_1, vx_1, 2);
  200. i += 8;
  201. vtemp0_p += vx_0*va0;
  202. vtemp0_r += vxr_0*va0;
  203. vtemp1_p += vx_0*va1;
  204. vtemp1_r += vxr_0*va1;
  205. vtemp2_p += vx_0*va2;
  206. vtemp2_r += vxr_0*va2;
  207. vtemp3_p += vx_0*va3;
  208. vtemp3_r += vxr_0*va3;
  209. vtemp0_p += vx_1*va0_1;
  210. vtemp0_r += vxr_1*va0_1;
  211. vtemp1_p += vx_1*va1_1;
  212. vtemp1_r += vxr_1*va1_1;
  213. vxr_0 = vec_xxpermdi(vx_2, vx_2, 2);
  214. vtemp2_p += vx_1*va2_1;
  215. vtemp2_r += vxr_1*va2_1;
  216. vtemp3_p += vx_1*va3_1;
  217. vtemp3_r += vxr_1*va3_1;
  218. vtemp0_p += vx_2*va0_2;
  219. vtemp0_r += vxr_0*va0_2;
  220. vxr_1 = vec_xxpermdi(vx_3, vx_3, 2);
  221. vtemp1_p += vx_2*va1_2;
  222. vtemp1_r += vxr_0*va1_2;
  223. vtemp2_p += vx_2*va2_2;
  224. vtemp2_r += vxr_0*va2_2;
  225. vtemp3_p += vx_2*va3_2;
  226. vtemp3_r += vxr_0*va3_2;
  227. vtemp0_p += vx_3*va0_3;
  228. vtemp0_r += vxr_1*va0_3;
  229. vtemp1_p += vx_3*va1_3;
  230. vtemp1_r += vxr_1*va1_3;
  231. vtemp2_p += vx_3*va2_3;
  232. vtemp2_r += vxr_1*va2_3;
  233. vtemp3_p += vx_3*va3_3;
  234. vtemp3_r += vxr_1*va3_3;
  235. }
  236. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  237. register FLOAT temp_r0 = vtemp0_p[0] - vtemp0_p[1];
  238. register FLOAT temp_i0 = vtemp0_r[0] + vtemp0_r[1];
  239. register FLOAT temp_r1 = vtemp1_p[0] - vtemp1_p[1];
  240. register FLOAT temp_i1 = vtemp1_r[0] + vtemp1_r[1];
  241. register FLOAT temp_r2 = vtemp2_p[0] - vtemp2_p[1];
  242. register FLOAT temp_i2 = vtemp2_r[0] + vtemp2_r[1];
  243. register FLOAT temp_r3 = vtemp3_p[0] - vtemp3_p[1];
  244. register FLOAT temp_i3 = vtemp3_r[0] + vtemp3_r[1];
  245. #else
  246. register FLOAT temp_r0 = vtemp0_p[0] + vtemp0_p[1];
  247. register FLOAT temp_i0 = vtemp0_r[0] - vtemp0_r[1];
  248. register FLOAT temp_r1 = vtemp1_p[0] + vtemp1_p[1];
  249. register FLOAT temp_i1 = vtemp1_r[0] - vtemp1_r[1];
  250. register FLOAT temp_r2 = vtemp2_p[0] + vtemp2_p[1];
  251. register FLOAT temp_i2 = vtemp2_r[0] - vtemp2_r[1];
  252. register FLOAT temp_r3 = vtemp3_p[0] + vtemp3_p[1];
  253. register FLOAT temp_i3 = vtemp3_r[0] - vtemp3_r[1];
  254. #endif
  255. #if !defined(XCONJ)
  256. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  257. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  258. y[2] += alpha_r * temp_r1 - alpha_i * temp_i1;
  259. y[3] += alpha_r * temp_i1 + alpha_i * temp_r1;
  260. y[4] += alpha_r * temp_r2 - alpha_i * temp_i2;
  261. y[5] += alpha_r * temp_i2 + alpha_i * temp_r2;
  262. y[6] += alpha_r * temp_r3 - alpha_i * temp_i3;
  263. y[7] += alpha_r * temp_i3 + alpha_i * temp_r3;
  264. #else
  265. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  266. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  267. y[2] += alpha_r * temp_r1 + alpha_i * temp_i1;
  268. y[3] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  269. y[4] += alpha_r * temp_r2 + alpha_i * temp_i2;
  270. y[5] -= alpha_r * temp_i2 - alpha_i * temp_r2;
  271. y[6] += alpha_r * temp_r3 + alpha_i * temp_i3;
  272. y[7] -= alpha_r * temp_i3 - alpha_i * temp_r3;
  273. #endif
  274. }
  275. #endif
  276. #else
  277. static void zgemv_kernel_4x4(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  278. BLASLONG i;
  279. FLOAT *a0, *a1, *a2, *a3;
  280. a0 = ap;
  281. a1 = ap + lda;
  282. a2 = a1 + lda;
  283. a3 = a2 + lda;
  284. FLOAT temp_r0 = 0.0;
  285. FLOAT temp_r1 = 0.0;
  286. FLOAT temp_r2 = 0.0;
  287. FLOAT temp_r3 = 0.0;
  288. FLOAT temp_i0 = 0.0;
  289. FLOAT temp_i1 = 0.0;
  290. FLOAT temp_i2 = 0.0;
  291. FLOAT temp_i3 = 0.0;
  292. for (i = 0; i < 2 * n; i += 2) {
  293. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  294. temp_r0 += a0[i] * x[i] - a0[i + 1] * x[i + 1];
  295. temp_i0 += a0[i] * x[i + 1] + a0[i + 1] * x[i];
  296. temp_r1 += a1[i] * x[i] - a1[i + 1] * x[i + 1];
  297. temp_i1 += a1[i] * x[i + 1] + a1[i + 1] * x[i];
  298. temp_r2 += a2[i] * x[i] - a2[i + 1] * x[i + 1];
  299. temp_i2 += a2[i] * x[i + 1] + a2[i + 1] * x[i];
  300. temp_r3 += a3[i] * x[i] - a3[i + 1] * x[i + 1];
  301. temp_i3 += a3[i] * x[i + 1] + a3[i + 1] * x[i];
  302. #else
  303. temp_r0 += a0[i] * x[i] + a0[i + 1] * x[i + 1];
  304. temp_i0 += a0[i] * x[i + 1] - a0[i + 1] * x[i];
  305. temp_r1 += a1[i] * x[i] + a1[i + 1] * x[i + 1];
  306. temp_i1 += a1[i] * x[i + 1] - a1[i + 1] * x[i];
  307. temp_r2 += a2[i] * x[i] + a2[i + 1] * x[i + 1];
  308. temp_i2 += a2[i] * x[i + 1] - a2[i + 1] * x[i];
  309. temp_r3 += a3[i] * x[i] + a3[i + 1] * x[i + 1];
  310. temp_i3 += a3[i] * x[i + 1] - a3[i + 1] * x[i];
  311. #endif
  312. }
  313. #if !defined(XCONJ)
  314. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  315. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  316. y[2] += alpha_r * temp_r1 - alpha_i * temp_i1;
  317. y[3] += alpha_r * temp_i1 + alpha_i * temp_r1;
  318. y[4] += alpha_r * temp_r2 - alpha_i * temp_i2;
  319. y[5] += alpha_r * temp_i2 + alpha_i * temp_r2;
  320. y[6] += alpha_r * temp_r3 - alpha_i * temp_i3;
  321. y[7] += alpha_r * temp_i3 + alpha_i * temp_r3;
  322. #else
  323. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  324. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  325. y[2] += alpha_r * temp_r1 + alpha_i * temp_i1;
  326. y[3] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  327. y[4] += alpha_r * temp_r2 + alpha_i * temp_i2;
  328. y[5] -= alpha_r * temp_i2 - alpha_i * temp_r2;
  329. y[6] += alpha_r * temp_r3 + alpha_i * temp_i3;
  330. y[7] -= alpha_r * temp_i3 - alpha_i * temp_r3;
  331. #endif
  332. }
  333. #endif
  334. #ifdef HAVE_KERNEL_4x2_VEC
  335. static void zgemv_kernel_4x2(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  336. BLASLONG i;
  337. FLOAT *a0, *a1;
  338. a0 = ap;
  339. a1 = ap + lda;
  340. //p for positive(real*real,image*image) r for image (real*image,image*real)
  341. register __vector double vtemp0_p = {0.0, 0.0};
  342. register __vector double vtemp0_r = {0.0, 0.0};
  343. register __vector double vtemp1_p = {0.0, 0.0};
  344. register __vector double vtemp1_r = {0.0, 0.0};
  345. i = 0;
  346. n = n << 1;
  347. while (i < n) {
  348. register __vector double vx_0 = *(__vector double*) (&x[i]);
  349. register __vector double vx_1 = *(__vector double*) (&x[i + 2]);
  350. register __vector double vx_2 = *(__vector double*) (&x[i + 4]);
  351. register __vector double vx_3 = *(__vector double*) (&x[i + 6]);
  352. register __vector double va0 = *(__vector double*) (&a0[i]);
  353. register __vector double va0_1 = *(__vector double*) (&a0[i + 2]);
  354. register __vector double va0_2 = *(__vector double*) (&a0[i + 4]);
  355. register __vector double va0_3 = *(__vector double*) (&a0[i + 6]);
  356. register __vector double va1 = *(__vector double*) (&a1[i]);
  357. register __vector double va1_1 = *(__vector double*) (&a1[i + 2]);
  358. register __vector double va1_2 = *(__vector double*) (&a1[i + 4]);
  359. register __vector double va1_3 = *(__vector double*) (&a1[i + 6]);
  360. register __vector double vxr_0 = vec_xxpermdi(vx_0, vx_0, 2);
  361. register __vector double vxr_1 = vec_xxpermdi(vx_1, vx_1, 2);
  362. i += 8;
  363. vtemp0_p += vx_0*va0;
  364. vtemp0_r += vxr_0*va0;
  365. vtemp1_p += vx_0*va1;
  366. vtemp1_r += vxr_0*va1;
  367. vxr_0 = vec_xxpermdi(vx_2, vx_2, 2);
  368. vtemp0_p += vx_1*va0_1;
  369. vtemp0_r += vxr_1*va0_1;
  370. vtemp1_p += vx_1*va1_1;
  371. vtemp1_r += vxr_1*va1_1;
  372. vxr_1 = vec_xxpermdi(vx_3, vx_3, 2);
  373. vtemp0_p += vx_2*va0_2;
  374. vtemp0_r += vxr_0*va0_2;
  375. vtemp1_p += vx_2*va1_2;
  376. vtemp1_r += vxr_0*va1_2;
  377. vtemp0_p += vx_3*va0_3;
  378. vtemp0_r += vxr_1*va0_3;
  379. vtemp1_p += vx_3*va1_3;
  380. vtemp1_r += vxr_1*va1_3;
  381. }
  382. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  383. register FLOAT temp_r0 = vtemp0_p[0] - vtemp0_p[1];
  384. register FLOAT temp_i0 = vtemp0_r[0] + vtemp0_r[1];
  385. register FLOAT temp_r1 = vtemp1_p[0] - vtemp1_p[1];
  386. register FLOAT temp_i1 = vtemp1_r[0] + vtemp1_r[1];
  387. #else
  388. register FLOAT temp_r0 = vtemp0_p[0] + vtemp0_p[1];
  389. register FLOAT temp_i0 = vtemp0_r[0] - vtemp0_r[1];
  390. register FLOAT temp_r1 = vtemp1_p[0] + vtemp1_p[1];
  391. register FLOAT temp_i1 = vtemp1_r[0] - vtemp1_r[1];
  392. #endif
  393. #if !defined(XCONJ)
  394. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  395. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  396. y[2] += alpha_r * temp_r1 - alpha_i * temp_i1;
  397. y[3] += alpha_r * temp_i1 + alpha_i * temp_r1;
  398. #else
  399. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  400. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  401. y[2] += alpha_r * temp_r1 + alpha_i * temp_i1;
  402. y[3] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  403. #endif
  404. }
  405. #else
  406. static void zgemv_kernel_4x2(BLASLONG n, BLASLONG lda, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  407. BLASLONG i;
  408. FLOAT *a0, *a1;
  409. a0 = ap;
  410. a1 = ap + lda;
  411. FLOAT temp_r0 = 0.0;
  412. FLOAT temp_r1 = 0.0;
  413. FLOAT temp_i0 = 0.0;
  414. FLOAT temp_i1 = 0.0;
  415. for (i = 0; i < 2 * n; i += 2) {
  416. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  417. temp_r0 += a0[i] * x[i] - a0[i + 1] * x[i + 1];
  418. temp_i0 += a0[i] * x[i + 1] + a0[i + 1] * x[i];
  419. temp_r1 += a1[i] * x[i] - a1[i + 1] * x[i + 1];
  420. temp_i1 += a1[i] * x[i + 1] + a1[i + 1] * x[i];
  421. #else
  422. temp_r0 += a0[i] * x[i] + a0[i + 1] * x[i + 1];
  423. temp_i0 += a0[i] * x[i + 1] - a0[i + 1] * x[i];
  424. temp_r1 += a1[i] * x[i] + a1[i + 1] * x[i + 1];
  425. temp_i1 += a1[i] * x[i + 1] - a1[i + 1] * x[i];
  426. #endif
  427. }
  428. #if !defined(XCONJ)
  429. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  430. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  431. y[2] += alpha_r * temp_r1 - alpha_i * temp_i1;
  432. y[3] += alpha_r * temp_i1 + alpha_i * temp_r1;
  433. #else
  434. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  435. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  436. y[2] += alpha_r * temp_r1 + alpha_i * temp_i1;
  437. y[3] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  438. #endif
  439. }
  440. #endif
  441. #ifdef HAVE_KERNEL_4x1_VEC
  442. static void zgemv_kernel_4x1(BLASLONG n, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  443. BLASLONG i;
  444. FLOAT *a0 ;
  445. a0 = ap;
  446. //p for positive(real*real,image*image) r for image (real*image,image*real)
  447. register __vector double vtemp0_p = {0.0, 0.0};
  448. register __vector double vtemp0_r = {0.0, 0.0};
  449. i = 0;
  450. n = n << 1;
  451. while (i < n) {
  452. register __vector double vx_0 = *(__vector double*) (&x[i]);
  453. register __vector double vx_1 = *(__vector double*) (&x[i + 2]);
  454. register __vector double vx_2 = *(__vector double*) (&x[i + 4]);
  455. register __vector double vx_3 = *(__vector double*) (&x[i + 6]);
  456. register __vector double va0 = *(__vector double*) (&a0[i]);
  457. register __vector double va0_1 = *(__vector double*) (&a0[i + 2]);
  458. register __vector double va0_2 = *(__vector double*) (&a0[i + 4]);
  459. register __vector double va0_3 = *(__vector double*) (&a0[i + 6]);
  460. register __vector double vxr_0 = vec_xxpermdi(vx_0, vx_0, 2);
  461. register __vector double vxr_1 = vec_xxpermdi(vx_1, vx_1, 2);
  462. i += 8;
  463. vtemp0_p += vx_0*va0;
  464. vtemp0_r += vxr_0*va0;
  465. vxr_0 = vec_xxpermdi(vx_2, vx_2, 2);
  466. vtemp0_p += vx_1*va0_1;
  467. vtemp0_r += vxr_1*va0_1;
  468. vxr_1 = vec_xxpermdi(vx_3, vx_3, 2);
  469. vtemp0_p += vx_2*va0_2;
  470. vtemp0_r += vxr_0*va0_2;
  471. vtemp0_p += vx_3*va0_3;
  472. vtemp0_r += vxr_1*va0_3;
  473. }
  474. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  475. register FLOAT temp_r0 = vtemp0_p[0] - vtemp0_p[1];
  476. register FLOAT temp_i0 = vtemp0_r[0] + vtemp0_r[1];
  477. #else
  478. register FLOAT temp_r0 = vtemp0_p[0] + vtemp0_p[1];
  479. register FLOAT temp_i0 = vtemp0_r[0] - vtemp0_r[1];
  480. #endif
  481. #if !defined(XCONJ)
  482. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  483. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  484. #else
  485. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  486. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  487. #endif
  488. }
  489. #else
  490. static void zgemv_kernel_4x1(BLASLONG n, FLOAT *ap, FLOAT *x, FLOAT *y, FLOAT alpha_r, FLOAT alpha_i) {
  491. BLASLONG i;
  492. FLOAT *a0;
  493. a0 = ap;
  494. FLOAT temp_r0 = 0.0;
  495. FLOAT temp_i0 = 0.0;
  496. for (i = 0; i < 2 * n; i += 2) {
  497. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  498. temp_r0 += a0[i] * x[i] - a0[i + 1] * x[i + 1];
  499. temp_i0 += a0[i] * x[i + 1] + a0[i + 1] * x[i];
  500. #else
  501. temp_r0 += a0[i] * x[i] + a0[i + 1] * x[i + 1];
  502. temp_i0 += a0[i] * x[i + 1] - a0[i + 1] * x[i];
  503. #endif
  504. }
  505. #if !defined(XCONJ)
  506. y[0] += alpha_r * temp_r0 - alpha_i * temp_i0;
  507. y[1] += alpha_r * temp_i0 + alpha_i * temp_r0;
  508. #else
  509. y[0] += alpha_r * temp_r0 + alpha_i * temp_i0;
  510. y[1] -= alpha_r * temp_i0 - alpha_i * temp_r0;
  511. #endif
  512. }
  513. #endif
  514. static __attribute__((always_inline)) inline void copy_x(BLASLONG n, FLOAT *src, FLOAT *dest, BLASLONG inc_src) {
  515. BLASLONG i;
  516. for (i = 0; i < n; i++) {
  517. *dest = *src;
  518. *(dest + 1) = *(src + 1);
  519. dest += 2;
  520. src += inc_src;
  521. }
  522. }
  523. int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer) {
  524. BLASLONG i;
  525. BLASLONG j;
  526. FLOAT *a_ptr;
  527. FLOAT *x_ptr;
  528. FLOAT *y_ptr;
  529. BLASLONG n1;
  530. BLASLONG m1;
  531. BLASLONG m2;
  532. BLASLONG m3;
  533. BLASLONG n2;
  534. FLOAT ybuffer[8] __attribute__((aligned(16)));
  535. FLOAT *xbuffer;
  536. if (m < 1) return (0);
  537. if (n < 1) return (0);
  538. inc_x <<= 1;
  539. inc_y <<= 1;
  540. lda <<= 1;
  541. xbuffer = buffer;
  542. n1 = n >> 2;
  543. n2 = n & 3;
  544. m3 = m & 3;
  545. m1 = m - m3;
  546. m2 = (m & (NBMAX - 1)) - m3;
  547. BLASLONG NB = NBMAX;
  548. while (NB == NBMAX) {
  549. m1 -= NB;
  550. if (m1 < 0) {
  551. if (m2 == 0) break;
  552. NB = m2;
  553. }
  554. y_ptr = y;
  555. a_ptr = a;
  556. x_ptr = x;
  557. if (inc_x != 2)
  558. copy_x(NB, x_ptr, xbuffer, inc_x);
  559. else
  560. xbuffer = x_ptr;
  561. if (inc_y == 2) {
  562. for (i = 0; i < n1; i++) {
  563. zgemv_kernel_4x4(NB, lda, a_ptr, xbuffer, y_ptr, alpha_r, alpha_i);
  564. a_ptr += lda << 2;
  565. y_ptr += 8;
  566. }
  567. if (n2 & 2) {
  568. zgemv_kernel_4x2(NB, lda, a_ptr, xbuffer, y_ptr, alpha_r, alpha_i);
  569. a_ptr += lda << 1;
  570. y_ptr += 4;
  571. }
  572. if (n2 & 1) {
  573. zgemv_kernel_4x1(NB, a_ptr, xbuffer, y_ptr, alpha_r, alpha_i);
  574. a_ptr += lda;
  575. y_ptr += 2;
  576. }
  577. } else {
  578. for (i = 0; i < n1; i++) {
  579. memset(ybuffer, 0, sizeof (ybuffer));
  580. zgemv_kernel_4x4(NB, lda, a_ptr, xbuffer, ybuffer, alpha_r, alpha_i);
  581. a_ptr += lda << 2;
  582. y_ptr[0] += ybuffer[0];
  583. y_ptr[1] += ybuffer[1];
  584. y_ptr += inc_y;
  585. y_ptr[0] += ybuffer[2];
  586. y_ptr[1] += ybuffer[3];
  587. y_ptr += inc_y;
  588. y_ptr[0] += ybuffer[4];
  589. y_ptr[1] += ybuffer[5];
  590. y_ptr += inc_y;
  591. y_ptr[0] += ybuffer[6];
  592. y_ptr[1] += ybuffer[7];
  593. y_ptr += inc_y;
  594. }
  595. for (i = 0; i < n2; i++) {
  596. memset(ybuffer, 0, sizeof (ybuffer));
  597. zgemv_kernel_4x1(NB, a_ptr, xbuffer, ybuffer, alpha_r, alpha_i);
  598. a_ptr += lda;
  599. y_ptr[0] += ybuffer[0];
  600. y_ptr[1] += ybuffer[1];
  601. y_ptr += inc_y;
  602. }
  603. }
  604. a += 2 * NB;
  605. x += NB * inc_x;
  606. }
  607. if (m3 == 0) return (0);
  608. x_ptr = x;
  609. j = 0;
  610. a_ptr = a;
  611. y_ptr = y;
  612. if (m3 == 3) {
  613. FLOAT temp_r;
  614. FLOAT temp_i;
  615. FLOAT x0 = x_ptr[0];
  616. FLOAT x1 = x_ptr[1];
  617. x_ptr += inc_x;
  618. FLOAT x2 = x_ptr[0];
  619. FLOAT x3 = x_ptr[1];
  620. x_ptr += inc_x;
  621. FLOAT x4 = x_ptr[0];
  622. FLOAT x5 = x_ptr[1];
  623. while (j < n) {
  624. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  625. temp_r = a_ptr[0] * x0 - a_ptr[1] * x1;
  626. temp_i = a_ptr[0] * x1 + a_ptr[1] * x0;
  627. temp_r += a_ptr[2] * x2 - a_ptr[3] * x3;
  628. temp_i += a_ptr[2] * x3 + a_ptr[3] * x2;
  629. temp_r += a_ptr[4] * x4 - a_ptr[5] * x5;
  630. temp_i += a_ptr[4] * x5 + a_ptr[5] * x4;
  631. #else
  632. temp_r = a_ptr[0] * x0 + a_ptr[1] * x1;
  633. temp_i = a_ptr[0] * x1 - a_ptr[1] * x0;
  634. temp_r += a_ptr[2] * x2 + a_ptr[3] * x3;
  635. temp_i += a_ptr[2] * x3 - a_ptr[3] * x2;
  636. temp_r += a_ptr[4] * x4 + a_ptr[5] * x5;
  637. temp_i += a_ptr[4] * x5 - a_ptr[5] * x4;
  638. #endif
  639. #if !defined(XCONJ)
  640. y_ptr[0] += alpha_r * temp_r - alpha_i * temp_i;
  641. y_ptr[1] += alpha_r * temp_i + alpha_i * temp_r;
  642. #else
  643. y_ptr[0] += alpha_r * temp_r + alpha_i * temp_i;
  644. y_ptr[1] -= alpha_r * temp_i - alpha_i * temp_r;
  645. #endif
  646. a_ptr += lda;
  647. y_ptr += inc_y;
  648. j++;
  649. }
  650. return (0);
  651. }
  652. if (m3 == 2) {
  653. FLOAT temp_r;
  654. FLOAT temp_i;
  655. FLOAT temp_r1;
  656. FLOAT temp_i1;
  657. FLOAT x0 = x_ptr[0];
  658. FLOAT x1 = x_ptr[1];
  659. x_ptr += inc_x;
  660. FLOAT x2 = x_ptr[0];
  661. FLOAT x3 = x_ptr[1];
  662. while (j < (n & -2)) {
  663. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  664. temp_r = a_ptr[0] * x0 - a_ptr[1] * x1;
  665. temp_i = a_ptr[0] * x1 + a_ptr[1] * x0;
  666. temp_r += a_ptr[2] * x2 - a_ptr[3] * x3;
  667. temp_i += a_ptr[2] * x3 + a_ptr[3] * x2;
  668. a_ptr += lda;
  669. temp_r1 = a_ptr[0] * x0 - a_ptr[1] * x1;
  670. temp_i1 = a_ptr[0] * x1 + a_ptr[1] * x0;
  671. temp_r1 += a_ptr[2] * x2 - a_ptr[3] * x3;
  672. temp_i1 += a_ptr[2] * x3 + a_ptr[3] * x2;
  673. #else
  674. temp_r = a_ptr[0] * x0 + a_ptr[1] * x1;
  675. temp_i = a_ptr[0] * x1 - a_ptr[1] * x0;
  676. temp_r += a_ptr[2] * x2 + a_ptr[3] * x3;
  677. temp_i += a_ptr[2] * x3 - a_ptr[3] * x2;
  678. a_ptr += lda;
  679. temp_r1 = a_ptr[0] * x0 + a_ptr[1] * x1;
  680. temp_i1 = a_ptr[0] * x1 - a_ptr[1] * x0;
  681. temp_r1 += a_ptr[2] * x2 + a_ptr[3] * x3;
  682. temp_i1 += a_ptr[2] * x3 - a_ptr[3] * x2;
  683. #endif
  684. #if !defined(XCONJ)
  685. y_ptr[0] += alpha_r * temp_r - alpha_i * temp_i;
  686. y_ptr[1] += alpha_r * temp_i + alpha_i * temp_r;
  687. y_ptr += inc_y;
  688. y_ptr[0] += alpha_r * temp_r1 - alpha_i * temp_i1;
  689. y_ptr[1] += alpha_r * temp_i1 + alpha_i * temp_r1;
  690. #else
  691. y_ptr[0] += alpha_r * temp_r + alpha_i * temp_i;
  692. y_ptr[1] -= alpha_r * temp_i - alpha_i * temp_r;
  693. y_ptr += inc_y;
  694. y_ptr[0] += alpha_r * temp_r1 + alpha_i * temp_i1;
  695. y_ptr[1] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  696. #endif
  697. a_ptr += lda;
  698. y_ptr += inc_y;
  699. j += 2;
  700. }
  701. while (j < n) {
  702. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  703. temp_r = a_ptr[0] * x0 - a_ptr[1] * x1;
  704. temp_i = a_ptr[0] * x1 + a_ptr[1] * x0;
  705. temp_r += a_ptr[2] * x2 - a_ptr[3] * x3;
  706. temp_i += a_ptr[2] * x3 + a_ptr[3] * x2;
  707. #else
  708. temp_r = a_ptr[0] * x0 + a_ptr[1] * x1;
  709. temp_i = a_ptr[0] * x1 - a_ptr[1] * x0;
  710. temp_r += a_ptr[2] * x2 + a_ptr[3] * x3;
  711. temp_i += a_ptr[2] * x3 - a_ptr[3] * x2;
  712. #endif
  713. #if !defined(XCONJ)
  714. y_ptr[0] += alpha_r * temp_r - alpha_i * temp_i;
  715. y_ptr[1] += alpha_r * temp_i + alpha_i * temp_r;
  716. #else
  717. y_ptr[0] += alpha_r * temp_r + alpha_i * temp_i;
  718. y_ptr[1] -= alpha_r * temp_i - alpha_i * temp_r;
  719. #endif
  720. a_ptr += lda;
  721. y_ptr += inc_y;
  722. j++;
  723. }
  724. return (0);
  725. }
  726. if (m3 == 1) {
  727. FLOAT temp_r;
  728. FLOAT temp_i;
  729. FLOAT temp_r1;
  730. FLOAT temp_i1;
  731. FLOAT x0 = x_ptr[0];
  732. FLOAT x1 = x_ptr[1];
  733. while (j < (n & -2)) {
  734. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  735. temp_r = a_ptr[0] * x0 - a_ptr[1] * x1;
  736. temp_i = a_ptr[0] * x1 + a_ptr[1] * x0;
  737. a_ptr += lda;
  738. temp_r1 = a_ptr[0] * x0 - a_ptr[1] * x1;
  739. temp_i1 = a_ptr[0] * x1 + a_ptr[1] * x0;
  740. #else
  741. temp_r = a_ptr[0] * x0 + a_ptr[1] * x1;
  742. temp_i = a_ptr[0] * x1 - a_ptr[1] * x0;
  743. a_ptr += lda;
  744. temp_r1 = a_ptr[0] * x0 + a_ptr[1] * x1;
  745. temp_i1 = a_ptr[0] * x1 - a_ptr[1] * x0;
  746. #endif
  747. #if !defined(XCONJ)
  748. y_ptr[0] += alpha_r * temp_r - alpha_i * temp_i;
  749. y_ptr[1] += alpha_r * temp_i + alpha_i * temp_r;
  750. y_ptr += inc_y;
  751. y_ptr[0] += alpha_r * temp_r1 - alpha_i * temp_i1;
  752. y_ptr[1] += alpha_r * temp_i1 + alpha_i * temp_r1;
  753. #else
  754. y_ptr[0] += alpha_r * temp_r + alpha_i * temp_i;
  755. y_ptr[1] -= alpha_r * temp_i - alpha_i * temp_r;
  756. y_ptr += inc_y;
  757. y_ptr[0] += alpha_r * temp_r1 + alpha_i * temp_i1;
  758. y_ptr[1] -= alpha_r * temp_i1 - alpha_i * temp_r1;
  759. #endif
  760. a_ptr += lda;
  761. y_ptr += inc_y;
  762. j += 2;
  763. }
  764. while (j < n) {
  765. #if ( !defined(CONJ) && !defined(XCONJ) ) || ( defined(CONJ) && defined(XCONJ) )
  766. temp_r = a_ptr[0] * x0 - a_ptr[1] * x1;
  767. temp_i = a_ptr[0] * x1 + a_ptr[1] * x0;
  768. #else
  769. temp_r = a_ptr[0] * x0 + a_ptr[1] * x1;
  770. temp_i = a_ptr[0] * x1 - a_ptr[1] * x0;
  771. #endif
  772. #if !defined(XCONJ)
  773. y_ptr[0] += alpha_r * temp_r - alpha_i * temp_i;
  774. y_ptr[1] += alpha_r * temp_i + alpha_i * temp_r;
  775. #else
  776. y_ptr[0] += alpha_r * temp_r + alpha_i * temp_i;
  777. y_ptr[1] -= alpha_r * temp_i - alpha_i * temp_r;
  778. #endif
  779. a_ptr += lda;
  780. y_ptr += inc_y;
  781. j++;
  782. }
  783. return (0);
  784. }
  785. return (0);
  786. }