You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gbmv_thread.c 7.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #include "common.h"
  41. #if !defined(CONJ) && !defined(XCONJ)
  42. #define MYAXPY AXPYU_K
  43. #define MYDOT DOTU_K
  44. #elif defined(CONJ) && !defined(XCONJ)
  45. #define MYAXPY AXPYC_K
  46. #define MYDOT DOTC_K
  47. #elif !defined(CONJ) && defined(XCONJ)
  48. #define MYAXPY AXPYU_K
  49. #define MYDOT DOTC_K
  50. #else
  51. #define MYAXPY AXPYC_K
  52. #define MYDOT DOTU_K
  53. #endif
  54. static int gbmv_kernel(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *dummy1, FLOAT *buffer, BLASLONG pos){
  55. FLOAT *a, *x, *y;
  56. BLASLONG lda, incx;
  57. BLASLONG n_from, n_to;
  58. BLASLONG i, offset_l, offset_u, uu, ll, ku, kl;
  59. #ifdef TRANSA
  60. #ifndef COMPLEX
  61. FLOAT result;
  62. #else
  63. OPENBLAS_COMPLEX_FLOAT result;
  64. #endif
  65. #endif
  66. a = (FLOAT *)args -> a;
  67. x = (FLOAT *)args -> b;
  68. y = (FLOAT *)args -> c;
  69. lda = args -> lda;
  70. incx = args -> ldb;
  71. ku = args -> ldc;
  72. kl = args -> ldd;
  73. n_from = 0;
  74. n_to = args -> n;
  75. if (range_m) y += *range_m * COMPSIZE;
  76. if (range_n) {
  77. n_from = *(range_n + 0);
  78. n_to = *(range_n + 1);
  79. a += n_from * lda * COMPSIZE;
  80. }
  81. n_to = MIN(n_to, args -> m + ku);
  82. #ifdef TRANSA
  83. if (incx != 1) {
  84. COPY_K(args -> m, x, incx, buffer, 1);
  85. x = buffer;
  86. // buffer += ((COMPSIZE * args -> m + 1023) & ~1023);
  87. }
  88. #endif
  89. SCAL_K(
  90. #ifndef TRANSA
  91. args -> m,
  92. #else
  93. args -> n,
  94. #endif
  95. 0, 0, ZERO,
  96. #ifdef COMPLEX
  97. ZERO,
  98. #endif
  99. y, 1, NULL, 0, NULL, 0);
  100. offset_u = ku - n_from;
  101. offset_l = ku - n_from + args -> m;
  102. #ifndef TRANSA
  103. x += n_from * incx * COMPSIZE;
  104. y -= offset_u * COMPSIZE;
  105. #else
  106. x -= offset_u * COMPSIZE;
  107. y += n_from * COMPSIZE;
  108. #endif
  109. for (i = n_from; i < n_to; i++) {
  110. uu = MAX(offset_u, 0);
  111. ll = MIN(offset_l, ku + kl + 1);
  112. #ifndef TRANSA
  113. MYAXPY(ll - uu, 0, 0,
  114. *(x + 0),
  115. #ifdef COMPLEX
  116. #ifndef XCONJ
  117. *(x + 1),
  118. #else
  119. -*(x + 1),
  120. #endif
  121. #endif
  122. a + uu * COMPSIZE, 1, y + uu * COMPSIZE, 1, NULL, 0);
  123. x += incx * COMPSIZE;
  124. #else
  125. result = MYDOT(ll - uu, a + uu * COMPSIZE, 1, x + uu * COMPSIZE, 1);
  126. #ifndef COMPLEX
  127. *y = result;
  128. #else
  129. *(y + 0) += CREAL(result);
  130. #ifndef XCONJ
  131. *(y + 1) += CIMAG(result);
  132. #else
  133. *(y + 1) -= CIMAG(result);
  134. #endif
  135. #endif
  136. x += COMPSIZE;
  137. #endif
  138. y += COMPSIZE;
  139. offset_u --;
  140. offset_l --;
  141. a += lda * COMPSIZE;
  142. }
  143. return 0;
  144. }
  145. #ifndef COMPLEX
  146. int CNAME(BLASLONG m, BLASLONG n, BLASLONG ku, BLASLONG kl, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
  147. #else
  148. int CNAME(BLASLONG m, BLASLONG n, BLASLONG ku, BLASLONG kl, FLOAT *alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer, int nthreads){
  149. #endif
  150. blas_arg_t args;
  151. blas_queue_t queue[MAX_CPU_NUMBER];
  152. BLASLONG range_m[MAX_CPU_NUMBER + 1];
  153. BLASLONG range_n[MAX_CPU_NUMBER + 1];
  154. BLASLONG width, i, num_cpu;
  155. #ifdef SMP
  156. #ifndef COMPLEX
  157. #ifdef XDOUBLE
  158. int mode = BLAS_XDOUBLE | BLAS_REAL;
  159. #elif defined(DOUBLE)
  160. int mode = BLAS_DOUBLE | BLAS_REAL;
  161. #else
  162. int mode = BLAS_SINGLE | BLAS_REAL;
  163. #endif
  164. #else
  165. #ifdef XDOUBLE
  166. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  167. #elif defined(DOUBLE)
  168. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  169. #else
  170. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  171. #endif
  172. #endif
  173. #endif
  174. args.m = m;
  175. args.n = n;
  176. args.a = (void *)a;
  177. args.b = (void *)x;
  178. args.c = (void *)buffer;
  179. args.lda = lda;
  180. args.ldb = incx;
  181. args.ldc = ku;
  182. args.ldd = kl;
  183. num_cpu = 0;
  184. range_n[0] = 0;
  185. i = n;
  186. while (i > 0){
  187. width = blas_quickdivide(i + nthreads - num_cpu - 1, nthreads - num_cpu);
  188. if (width < 4) width = 4;
  189. if (i < width) width = i;
  190. range_n[num_cpu + 1] = range_n[num_cpu] + width;
  191. #ifndef TRANSA
  192. range_m[num_cpu] = num_cpu * ((m + 15) & ~15);
  193. if (range_m[num_cpu] > m * num_cpu) range_m[num_cpu] = m * num_cpu;
  194. #else
  195. range_m[num_cpu] = num_cpu * ((n + 15) & ~15);
  196. if (range_m[num_cpu] > n * num_cpu) range_m[num_cpu] = n * num_cpu;
  197. #endif
  198. queue[num_cpu].mode = mode;
  199. queue[num_cpu].routine = gbmv_kernel;
  200. queue[num_cpu].args = &args;
  201. queue[num_cpu].range_m = &range_m[num_cpu];
  202. queue[num_cpu].range_n = &range_n[num_cpu];
  203. queue[num_cpu].sa = NULL;
  204. queue[num_cpu].sb = NULL;
  205. queue[num_cpu].next = &queue[num_cpu + 1];
  206. num_cpu ++;
  207. i -= width;
  208. }
  209. if (num_cpu) {
  210. queue[0].sa = NULL;
  211. #ifndef TRANSA
  212. queue[0].sb = buffer + num_cpu * (((m + 255) & ~255) + 16) * COMPSIZE;
  213. #else
  214. queue[0].sb = buffer + num_cpu * (((n + 255) & ~255) + 16) * COMPSIZE;
  215. #endif
  216. queue[num_cpu - 1].next = NULL;
  217. exec_blas(num_cpu, queue);
  218. }
  219. for (i = 1; i < num_cpu; i ++) {
  220. AXPYU_K(
  221. #ifndef TRANSA
  222. m,
  223. #else
  224. n,
  225. #endif
  226. 0, 0,
  227. #ifndef COMPLEX
  228. ONE,
  229. #else
  230. ONE, ZERO,
  231. #endif
  232. buffer + range_m[i] * COMPSIZE, 1, buffer, 1, NULL, 0);
  233. }
  234. AXPYU_K(
  235. #ifndef TRANSA
  236. m,
  237. #else
  238. n,
  239. #endif
  240. 0, 0,
  241. #ifndef COMPLEX
  242. alpha,
  243. #else
  244. alpha[0], alpha[1],
  245. #endif
  246. buffer, 1, y, incy, NULL, 0);
  247. return 0;
  248. }