You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zcgesv.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. *> \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixed precision with iterative refinement)
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZCGESV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  22. * SWORK, RWORK, ITER, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION RWORK( * )
  30. * COMPLEX SWORK( * )
  31. * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  32. * $ X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> ZCGESV computes the solution to a complex system of linear equations
  42. *> A * X = B,
  43. *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
  44. *>
  45. *> ZCGESV first attempts to factorize the matrix in COMPLEX and use this
  46. *> factorization within an iterative refinement procedure to produce a
  47. *> solution with COMPLEX*16 normwise backward error quality (see below).
  48. *> If the approach fails the method switches to a COMPLEX*16
  49. *> factorization and solve.
  50. *>
  51. *> The iterative refinement is not going to be a winning strategy if
  52. *> the ratio COMPLEX performance over COMPLEX*16 performance is too
  53. *> small. A reasonable strategy should take the number of right-hand
  54. *> sides and the size of the matrix into account. This might be done
  55. *> with a call to ILAENV in the future. Up to now, we always try
  56. *> iterative refinement.
  57. *>
  58. *> The iterative refinement process is stopped if
  59. *> ITER > ITERMAX
  60. *> or for all the RHS we have:
  61. *> RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
  62. *> where
  63. *> o ITER is the number of the current iteration in the iterative
  64. *> refinement process
  65. *> o RNRM is the infinity-norm of the residual
  66. *> o XNRM is the infinity-norm of the solution
  67. *> o ANRM is the infinity-operator-norm of the matrix A
  68. *> o EPS is the machine epsilon returned by DLAMCH('Epsilon')
  69. *> The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
  70. *> respectively.
  71. *> \endverbatim
  72. *
  73. * Arguments:
  74. * ==========
  75. *
  76. *> \param[in] N
  77. *> \verbatim
  78. *> N is INTEGER
  79. *> The number of linear equations, i.e., the order of the
  80. *> matrix A. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] NRHS
  84. *> \verbatim
  85. *> NRHS is INTEGER
  86. *> The number of right hand sides, i.e., the number of columns
  87. *> of the matrix B. NRHS >= 0.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] A
  91. *> \verbatim
  92. *> A is COMPLEX*16 array,
  93. *> dimension (LDA,N)
  94. *> On entry, the N-by-N coefficient matrix A.
  95. *> On exit, if iterative refinement has been successfully used
  96. *> (INFO = 0 and ITER >= 0, see description below), then A is
  97. *> unchanged, if double precision factorization has been used
  98. *> (INFO = 0 and ITER < 0, see description below), then the
  99. *> array A contains the factors L and U from the factorization
  100. *> A = P*L*U; the unit diagonal elements of L are not stored.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> The leading dimension of the array A. LDA >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] IPIV
  110. *> \verbatim
  111. *> IPIV is INTEGER array, dimension (N)
  112. *> The pivot indices that define the permutation matrix P;
  113. *> row i of the matrix was interchanged with row IPIV(i).
  114. *> Corresponds either to the single precision factorization
  115. *> (if INFO = 0 and ITER >= 0) or the double precision
  116. *> factorization (if INFO = 0 and ITER < 0).
  117. *> \endverbatim
  118. *>
  119. *> \param[in] B
  120. *> \verbatim
  121. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  122. *> The N-by-NRHS right hand side matrix B.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[out] X
  132. *> \verbatim
  133. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  134. *> If INFO = 0, the N-by-NRHS solution matrix X.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDX
  138. *> \verbatim
  139. *> LDX is INTEGER
  140. *> The leading dimension of the array X. LDX >= max(1,N).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is COMPLEX*16 array, dimension (N,NRHS)
  146. *> This array is used to hold the residual vectors.
  147. *> \endverbatim
  148. *>
  149. *> \param[out] SWORK
  150. *> \verbatim
  151. *> SWORK is COMPLEX array, dimension (N*(N+NRHS))
  152. *> This array is used to use the single precision matrix and the
  153. *> right-hand sides or solutions in single precision.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] RWORK
  157. *> \verbatim
  158. *> RWORK is DOUBLE PRECISION array, dimension (N)
  159. *> \endverbatim
  160. *>
  161. *> \param[out] ITER
  162. *> \verbatim
  163. *> ITER is INTEGER
  164. *> < 0: iterative refinement has failed, COMPLEX*16
  165. *> factorization has been performed
  166. *> -1 : the routine fell back to full precision for
  167. *> implementation- or machine-specific reasons
  168. *> -2 : narrowing the precision induced an overflow,
  169. *> the routine fell back to full precision
  170. *> -3 : failure of CGETRF
  171. *> -31: stop the iterative refinement after the 30th
  172. *> iterations
  173. *> > 0: iterative refinement has been successfully used.
  174. *> Returns the number of iterations
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value
  182. *> > 0: if INFO = i, U(i,i) computed in COMPLEX*16 is exactly
  183. *> zero. The factorization has been completed, but the
  184. *> factor U is exactly singular, so the solution
  185. *> could not be computed.
  186. *> \endverbatim
  187. *
  188. * Authors:
  189. * ========
  190. *
  191. *> \author Univ. of Tennessee
  192. *> \author Univ. of California Berkeley
  193. *> \author Univ. of Colorado Denver
  194. *> \author NAG Ltd.
  195. *
  196. *> \ingroup complex16GEsolve
  197. *
  198. * =====================================================================
  199. SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK,
  200. $ SWORK, RWORK, ITER, INFO )
  201. *
  202. * -- LAPACK driver routine --
  203. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  204. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  205. *
  206. * .. Scalar Arguments ..
  207. INTEGER INFO, ITER, LDA, LDB, LDX, N, NRHS
  208. * ..
  209. * .. Array Arguments ..
  210. INTEGER IPIV( * )
  211. DOUBLE PRECISION RWORK( * )
  212. COMPLEX SWORK( * )
  213. COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( N, * ),
  214. $ X( LDX, * )
  215. * ..
  216. *
  217. * =====================================================================
  218. *
  219. * .. Parameters ..
  220. LOGICAL DOITREF
  221. PARAMETER ( DOITREF = .TRUE. )
  222. *
  223. INTEGER ITERMAX
  224. PARAMETER ( ITERMAX = 30 )
  225. *
  226. DOUBLE PRECISION BWDMAX
  227. PARAMETER ( BWDMAX = 1.0E+00 )
  228. *
  229. COMPLEX*16 NEGONE, ONE
  230. PARAMETER ( NEGONE = ( -1.0D+00, 0.0D+00 ),
  231. $ ONE = ( 1.0D+00, 0.0D+00 ) )
  232. *
  233. * .. Local Scalars ..
  234. INTEGER I, IITER, PTSA, PTSX
  235. DOUBLE PRECISION ANRM, CTE, EPS, RNRM, XNRM
  236. COMPLEX*16 ZDUM
  237. *
  238. * .. External Subroutines ..
  239. EXTERNAL CGETRS, CGETRF, CLAG2Z, XERBLA, ZAXPY, ZGEMM,
  240. $ ZLACPY, ZLAG2C, ZGETRF, ZGETRS
  241. * ..
  242. * .. External Functions ..
  243. INTEGER IZAMAX
  244. DOUBLE PRECISION DLAMCH, ZLANGE
  245. EXTERNAL IZAMAX, DLAMCH, ZLANGE
  246. * ..
  247. * .. Intrinsic Functions ..
  248. INTRINSIC ABS, DBLE, MAX, SQRT
  249. * ..
  250. * .. Statement Functions ..
  251. DOUBLE PRECISION CABS1
  252. * ..
  253. * .. Statement Function definitions ..
  254. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  255. * ..
  256. * .. Executable Statements ..
  257. *
  258. INFO = 0
  259. ITER = 0
  260. *
  261. * Test the input parameters.
  262. *
  263. IF( N.LT.0 ) THEN
  264. INFO = -1
  265. ELSE IF( NRHS.LT.0 ) THEN
  266. INFO = -2
  267. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  268. INFO = -4
  269. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  270. INFO = -7
  271. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  272. INFO = -9
  273. END IF
  274. IF( INFO.NE.0 ) THEN
  275. CALL XERBLA( 'ZCGESV', -INFO )
  276. RETURN
  277. END IF
  278. *
  279. * Quick return if (N.EQ.0).
  280. *
  281. IF( N.EQ.0 )
  282. $ RETURN
  283. *
  284. * Skip single precision iterative refinement if a priori slower
  285. * than double precision factorization.
  286. *
  287. IF( .NOT.DOITREF ) THEN
  288. ITER = -1
  289. GO TO 40
  290. END IF
  291. *
  292. * Compute some constants.
  293. *
  294. ANRM = ZLANGE( 'I', N, N, A, LDA, RWORK )
  295. EPS = DLAMCH( 'Epsilon' )
  296. CTE = ANRM*EPS*SQRT( DBLE( N ) )*BWDMAX
  297. *
  298. * Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
  299. *
  300. PTSA = 1
  301. PTSX = PTSA + N*N
  302. *
  303. * Convert B from double precision to single precision and store the
  304. * result in SX.
  305. *
  306. CALL ZLAG2C( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
  307. *
  308. IF( INFO.NE.0 ) THEN
  309. ITER = -2
  310. GO TO 40
  311. END IF
  312. *
  313. * Convert A from double precision to single precision and store the
  314. * result in SA.
  315. *
  316. CALL ZLAG2C( N, N, A, LDA, SWORK( PTSA ), N, INFO )
  317. *
  318. IF( INFO.NE.0 ) THEN
  319. ITER = -2
  320. GO TO 40
  321. END IF
  322. *
  323. * Compute the LU factorization of SA.
  324. *
  325. CALL CGETRF( N, N, SWORK( PTSA ), N, IPIV, INFO )
  326. *
  327. IF( INFO.NE.0 ) THEN
  328. ITER = -3
  329. GO TO 40
  330. END IF
  331. *
  332. * Solve the system SA*SX = SB.
  333. *
  334. CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  335. $ SWORK( PTSX ), N, INFO )
  336. *
  337. * Convert SX back to double precision
  338. *
  339. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
  340. *
  341. * Compute R = B - AX (R is WORK).
  342. *
  343. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  344. *
  345. CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE, A,
  346. $ LDA, X, LDX, ONE, WORK, N )
  347. *
  348. * Check whether the NRHS normwise backward errors satisfy the
  349. * stopping criterion. If yes, set ITER=0 and return.
  350. *
  351. DO I = 1, NRHS
  352. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  353. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  354. IF( RNRM.GT.XNRM*CTE )
  355. $ GO TO 10
  356. END DO
  357. *
  358. * If we are here, the NRHS normwise backward errors satisfy the
  359. * stopping criterion. We are good to exit.
  360. *
  361. ITER = 0
  362. RETURN
  363. *
  364. 10 CONTINUE
  365. *
  366. DO 30 IITER = 1, ITERMAX
  367. *
  368. * Convert R (in WORK) from double precision to single precision
  369. * and store the result in SX.
  370. *
  371. CALL ZLAG2C( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
  372. *
  373. IF( INFO.NE.0 ) THEN
  374. ITER = -2
  375. GO TO 40
  376. END IF
  377. *
  378. * Solve the system SA*SX = SR.
  379. *
  380. CALL CGETRS( 'No transpose', N, NRHS, SWORK( PTSA ), N, IPIV,
  381. $ SWORK( PTSX ), N, INFO )
  382. *
  383. * Convert SX back to double precision and update the current
  384. * iterate.
  385. *
  386. CALL CLAG2Z( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
  387. *
  388. DO I = 1, NRHS
  389. CALL ZAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
  390. END DO
  391. *
  392. * Compute R = B - AX (R is WORK).
  393. *
  394. CALL ZLACPY( 'All', N, NRHS, B, LDB, WORK, N )
  395. *
  396. CALL ZGEMM( 'No Transpose', 'No Transpose', N, NRHS, N, NEGONE,
  397. $ A, LDA, X, LDX, ONE, WORK, N )
  398. *
  399. * Check whether the NRHS normwise backward errors satisfy the
  400. * stopping criterion. If yes, set ITER=IITER>0 and return.
  401. *
  402. DO I = 1, NRHS
  403. XNRM = CABS1( X( IZAMAX( N, X( 1, I ), 1 ), I ) )
  404. RNRM = CABS1( WORK( IZAMAX( N, WORK( 1, I ), 1 ), I ) )
  405. IF( RNRM.GT.XNRM*CTE )
  406. $ GO TO 20
  407. END DO
  408. *
  409. * If we are here, the NRHS normwise backward errors satisfy the
  410. * stopping criterion, we are good to exit.
  411. *
  412. ITER = IITER
  413. *
  414. RETURN
  415. *
  416. 20 CONTINUE
  417. *
  418. 30 CONTINUE
  419. *
  420. * If we are at this place of the code, this is because we have
  421. * performed ITER=ITERMAX iterations and never satisfied the stopping
  422. * criterion, set up the ITER flag accordingly and follow up on double
  423. * precision routine.
  424. *
  425. ITER = -ITERMAX - 1
  426. *
  427. 40 CONTINUE
  428. *
  429. * Single-precision iterative refinement failed to converge to a
  430. * satisfactory solution, so we resort to double precision.
  431. *
  432. CALL ZGETRF( N, N, A, LDA, IPIV, INFO )
  433. *
  434. IF( INFO.NE.0 )
  435. $ RETURN
  436. *
  437. CALL ZLACPY( 'All', N, NRHS, B, LDB, X, LDX )
  438. CALL ZGETRS( 'No transpose', N, NRHS, A, LDA, IPIV, X, LDX,
  439. $ INFO )
  440. *
  441. RETURN
  442. *
  443. * End of ZCGESV
  444. *
  445. END