You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaqz3.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565
  1. *> \brief \b DLAQZ3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAQZ3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
  22. * $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
  23. * $ ZC, LDZC, WORK, LWORK, REC, INFO )
  24. * IMPLICIT NONE
  25. *
  26. * Arguments
  27. * LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  28. * INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  29. * $ LDQC, LDZC, LWORK, REC
  30. *
  31. * DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
  32. * $ Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * )
  33. * INTEGER, INTENT( OUT ) :: NS, ND, INFO
  34. * DOUBLE PRECISION :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DLAQZ3 performs AED
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] ILSCHUR
  50. *> \verbatim
  51. *> ILSCHUR is LOGICAL
  52. *> Determines whether or not to update the full Schur form
  53. *> \endverbatim
  54. *>
  55. *> \param[in] ILQ
  56. *> \verbatim
  57. *> ILQ is LOGICAL
  58. *> Determines whether or not to update the matrix Q
  59. *> \endverbatim
  60. *>
  61. *> \param[in] ILZ
  62. *> \verbatim
  63. *> ILZ is LOGICAL
  64. *> Determines whether or not to update the matrix Z
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrices A, B, Q, and Z. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ILO
  74. *> \verbatim
  75. *> ILO is INTEGER
  76. *> \endverbatim
  77. *>
  78. *> \param[in] IHI
  79. *> \verbatim
  80. *> IHI is INTEGER
  81. *> ILO and IHI mark the rows and columns of (A,B) which
  82. *> are to be normalized
  83. *> \endverbatim
  84. *>
  85. *> \param[in] NW
  86. *> \verbatim
  87. *> NW is INTEGER
  88. *> The desired size of the deflation window.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] A
  92. *> \verbatim
  93. *> A is DOUBLE PRECISION array, dimension (LDA, N)
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDA
  97. *> \verbatim
  98. *> LDA is INTEGER
  99. *> The leading dimension of the array A. LDA >= max( 1, N ).
  100. *> \endverbatim
  101. *>
  102. *> \param[in,out] B
  103. *> \verbatim
  104. *> B is DOUBLE PRECISION array, dimension (LDB, N)
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDB
  108. *> \verbatim
  109. *> LDB is INTEGER
  110. *> The leading dimension of the array B. LDB >= max( 1, N ).
  111. *> \endverbatim
  112. *>
  113. *> \param[in,out] Q
  114. *> \verbatim
  115. *> Q is DOUBLE PRECISION array, dimension (LDQ, N)
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDQ
  119. *> \verbatim
  120. *> LDQ is INTEGER
  121. *> \endverbatim
  122. *>
  123. *> \param[in,out] Z
  124. *> \verbatim
  125. *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
  126. *> \endverbatim
  127. *>
  128. *> \param[in] LDZ
  129. *> \verbatim
  130. *> LDZ is INTEGER
  131. *> \endverbatim
  132. *>
  133. *> \param[out] NS
  134. *> \verbatim
  135. *> NS is INTEGER
  136. *> The number of unconverged eigenvalues available to
  137. *> use as shifts.
  138. *> \endverbatim
  139. *>
  140. *> \param[out] ND
  141. *> \verbatim
  142. *> ND is INTEGER
  143. *> The number of converged eigenvalues found.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] ALPHAR
  147. *> \verbatim
  148. *> ALPHAR is DOUBLE PRECISION array, dimension (N)
  149. *> The real parts of each scalar alpha defining an eigenvalue
  150. *> of GNEP.
  151. *> \endverbatim
  152. *>
  153. *> \param[out] ALPHAI
  154. *> \verbatim
  155. *> ALPHAI is DOUBLE PRECISION array, dimension (N)
  156. *> The imaginary parts of each scalar alpha defining an
  157. *> eigenvalue of GNEP.
  158. *> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  159. *> positive, then the j-th and (j+1)-st eigenvalues are a
  160. *> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
  161. *> \endverbatim
  162. *>
  163. *> \param[out] BETA
  164. *> \verbatim
  165. *> BETA is DOUBLE PRECISION array, dimension (N)
  166. *> The scalars beta that define the eigenvalues of GNEP.
  167. *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
  168. *> beta = BETA(j) represent the j-th eigenvalue of the matrix
  169. *> pair (A,B), in one of the forms lambda = alpha/beta or
  170. *> mu = beta/alpha. Since either lambda or mu may overflow,
  171. *> they should not, in general, be computed.
  172. *> \endverbatim
  173. *>
  174. *> \param[in,out] QC
  175. *> \verbatim
  176. *> QC is DOUBLE PRECISION array, dimension (LDQC, NW)
  177. *> \endverbatim
  178. *>
  179. *> \param[in] LDQC
  180. *> \verbatim
  181. *> LDQC is INTEGER
  182. *> \endverbatim
  183. *>
  184. *> \param[in,out] ZC
  185. *> \verbatim
  186. *> ZC is DOUBLE PRECISION array, dimension (LDZC, NW)
  187. *> \endverbatim
  188. *>
  189. *> \param[in] LDZC
  190. *> \verbatim
  191. *> LDZ is INTEGER
  192. *> \endverbatim
  193. *>
  194. *> \param[out] WORK
  195. *> \verbatim
  196. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  197. *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
  198. *> \endverbatim
  199. *>
  200. *> \param[in] LWORK
  201. *> \verbatim
  202. *> LWORK is INTEGER
  203. *> The dimension of the array WORK. LWORK >= max(1,N).
  204. *>
  205. *> If LWORK = -1, then a workspace query is assumed; the routine
  206. *> only calculates the optimal size of the WORK array, returns
  207. *> this value as the first entry of the WORK array, and no error
  208. *> message related to LWORK is issued by XERBLA.
  209. *> \endverbatim
  210. *>
  211. *> \param[in] REC
  212. *> \verbatim
  213. *> REC is INTEGER
  214. *> REC indicates the current recursion level. Should be set
  215. *> to 0 on first call.
  216. *> \endverbatim
  217. *>
  218. *> \param[out] INFO
  219. *> \verbatim
  220. *> INFO is INTEGER
  221. *> = 0: successful exit
  222. *> < 0: if INFO = -i, the i-th argument had an illegal value
  223. *> \endverbatim
  224. *
  225. * Authors:
  226. * ========
  227. *
  228. *> \author Thijs Steel, KU Leuven
  229. *
  230. *> \date May 2020
  231. *
  232. *> \ingroup doubleGEcomputational
  233. *>
  234. * =====================================================================
  235. RECURSIVE SUBROUTINE DLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW,
  236. $ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS,
  237. $ ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
  238. $ ZC, LDZC, WORK, LWORK, REC, INFO )
  239. IMPLICIT NONE
  240. * Arguments
  241. LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  242. INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  243. $ LDQC, LDZC, LWORK, REC
  244. DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
  245. $ Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ),
  246. $ ALPHAI( * ), BETA( * )
  247. INTEGER, INTENT( OUT ) :: NS, ND, INFO
  248. DOUBLE PRECISION :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  249. * Parameters
  250. DOUBLE PRECISION :: ZERO, ONE, HALF
  251. PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
  252. * Local Scalars
  253. LOGICAL :: BULGE
  254. INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, DTGEXC_INFO,
  255. $ IFST, ILST, LWORKREQ, QZ_SMALL_INFO
  256. DOUBLE PRECISION :: S, SMLNUM, ULP, SAFMIN, SAFMAX, C1, S1, TEMP
  257. * External Functions
  258. EXTERNAL :: XERBLA, DTGEXC, DLABAD, DLAQZ0, DLACPY, DLASET,
  259. $ DLAQZ2, DROT, DLARTG, DLAG2, DGEMM
  260. DOUBLE PRECISION, EXTERNAL :: DLAMCH
  261. INFO = 0
  262. * Set up deflation window
  263. JW = MIN( NW, IHI-ILO+1 )
  264. KWTOP = IHI-JW+1
  265. IF ( KWTOP .EQ. ILO ) THEN
  266. S = ZERO
  267. ELSE
  268. S = A( KWTOP, KWTOP-1 )
  269. END IF
  270. * Determine required workspace
  271. IFST = 1
  272. ILST = JW
  273. CALL DTGEXC( .TRUE., .TRUE., JW, A, LDA, B, LDB, QC, LDQC, ZC,
  274. $ LDZC, IFST, ILST, WORK, -1, DTGEXC_INFO )
  275. LWORKREQ = INT( WORK( 1 ) )
  276. CALL DLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  277. $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
  278. $ LDQC, ZC, LDZC, WORK, -1, REC+1, QZ_SMALL_INFO )
  279. LWORKREQ = MAX( LWORKREQ, INT( WORK( 1 ) )+2*JW**2 )
  280. LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N )
  281. IF ( LWORK .EQ.-1 ) THEN
  282. * workspace query, quick return
  283. WORK( 1 ) = LWORKREQ
  284. RETURN
  285. ELSE IF ( LWORK .LT. LWORKREQ ) THEN
  286. INFO = -26
  287. END IF
  288. IF( INFO.NE.0 ) THEN
  289. CALL XERBLA( 'DLAQZ3', -INFO )
  290. RETURN
  291. END IF
  292. * Get machine constants
  293. SAFMIN = DLAMCH( 'SAFE MINIMUM' )
  294. SAFMAX = ONE/SAFMIN
  295. CALL DLABAD( SAFMIN, SAFMAX )
  296. ULP = DLAMCH( 'PRECISION' )
  297. SMLNUM = SAFMIN*( DBLE( N )/ULP )
  298. IF ( IHI .EQ. KWTOP ) THEN
  299. * 1 by 1 deflation window, just try a regular deflation
  300. ALPHAR( KWTOP ) = A( KWTOP, KWTOP )
  301. ALPHAI( KWTOP ) = ZERO
  302. BETA( KWTOP ) = B( KWTOP, KWTOP )
  303. NS = 1
  304. ND = 0
  305. IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP,
  306. $ KWTOP ) ) ) ) THEN
  307. NS = 0
  308. ND = 1
  309. IF ( KWTOP .GT. ILO ) THEN
  310. A( KWTOP, KWTOP-1 ) = ZERO
  311. END IF
  312. END IF
  313. END IF
  314. * Store window in case of convergence failure
  315. CALL DLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW )
  316. CALL DLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+
  317. $ 1 ), JW )
  318. * Transform window to real schur form
  319. CALL DLASET( 'FULL', JW, JW, ZERO, ONE, QC, LDQC )
  320. CALL DLASET( 'FULL', JW, JW, ZERO, ONE, ZC, LDZC )
  321. CALL DLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  322. $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
  323. $ LDQC, ZC, LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2,
  324. $ REC+1, QZ_SMALL_INFO )
  325. IF( QZ_SMALL_INFO .NE. 0 ) THEN
  326. * Convergence failure, restore the window and exit
  327. ND = 0
  328. NS = JW-QZ_SMALL_INFO
  329. CALL DLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA )
  330. CALL DLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP,
  331. $ KWTOP ), LDB )
  332. RETURN
  333. END IF
  334. * Deflation detection loop
  335. IF ( KWTOP .EQ. ILO .OR. S .EQ. ZERO ) THEN
  336. KWBOT = KWTOP-1
  337. ELSE
  338. KWBOT = IHI
  339. K = 1
  340. K2 = 1
  341. DO WHILE ( K .LE. JW )
  342. BULGE = .FALSE.
  343. IF ( KWBOT-KWTOP+1 .GE. 2 ) THEN
  344. BULGE = A( KWBOT, KWBOT-1 ) .NE. ZERO
  345. END IF
  346. IF ( BULGE ) THEN
  347. * Try to deflate complex conjugate eigenvalue pair
  348. TEMP = ABS( A( KWBOT, KWBOT ) )+SQRT( ABS( A( KWBOT,
  349. $ KWBOT-1 ) ) )*SQRT( ABS( A( KWBOT-1, KWBOT ) ) )
  350. IF( TEMP .EQ. ZERO )THEN
  351. TEMP = ABS( S )
  352. END IF
  353. IF ( MAX( ABS( S*QC( 1, KWBOT-KWTOP ) ), ABS( S*QC( 1,
  354. $ KWBOT-KWTOP+1 ) ) ) .LE. MAX( SMLNUM,
  355. $ ULP*TEMP ) ) THEN
  356. * Deflatable
  357. KWBOT = KWBOT-2
  358. ELSE
  359. * Not deflatable, move out of the way
  360. IFST = KWBOT-KWTOP+1
  361. ILST = K2
  362. CALL DTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
  363. $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
  364. $ ZC, LDZC, IFST, ILST, WORK, LWORK,
  365. $ DTGEXC_INFO )
  366. K2 = K2+2
  367. END IF
  368. K = K+2
  369. ELSE
  370. * Try to deflate real eigenvalue
  371. TEMP = ABS( A( KWBOT, KWBOT ) )
  372. IF( TEMP .EQ. ZERO ) THEN
  373. TEMP = ABS( S )
  374. END IF
  375. IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP*
  376. $ TEMP, SMLNUM ) ) THEN
  377. * Deflatable
  378. KWBOT = KWBOT-1
  379. ELSE
  380. * Not deflatable, move out of the way
  381. IFST = KWBOT-KWTOP+1
  382. ILST = K2
  383. CALL DTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
  384. $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
  385. $ ZC, LDZC, IFST, ILST, WORK, LWORK,
  386. $ DTGEXC_INFO )
  387. K2 = K2+1
  388. END IF
  389. K = K+1
  390. END IF
  391. END DO
  392. END IF
  393. * Store eigenvalues
  394. ND = IHI-KWBOT
  395. NS = JW-ND
  396. K = KWTOP
  397. DO WHILE ( K .LE. IHI )
  398. BULGE = .FALSE.
  399. IF ( K .LT. IHI ) THEN
  400. IF ( A( K+1, K ) .NE. ZERO ) THEN
  401. BULGE = .TRUE.
  402. END IF
  403. END IF
  404. IF ( BULGE ) THEN
  405. * 2x2 eigenvalue block
  406. CALL DLAG2( A( K, K ), LDA, B( K, K ), LDB, SAFMIN,
  407. $ BETA( K ), BETA( K+1 ), ALPHAR( K ),
  408. $ ALPHAR( K+1 ), ALPHAI( K ) )
  409. ALPHAI( K+1 ) = -ALPHAI( K )
  410. K = K+2
  411. ELSE
  412. * 1x1 eigenvalue block
  413. ALPHAR( K ) = A( K, K )
  414. ALPHAI( K ) = ZERO
  415. BETA( K ) = B( K, K )
  416. K = K+1
  417. END IF
  418. END DO
  419. IF ( KWTOP .NE. ILO .AND. S .NE. ZERO ) THEN
  420. * Reflect spike back, this will create optimally packed bulges
  421. A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 )*QC( 1,
  422. $ 1:JW-ND )
  423. DO K = KWBOT-1, KWTOP, -1
  424. CALL DLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1,
  425. $ TEMP )
  426. A( K, KWTOP-1 ) = TEMP
  427. A( K+1, KWTOP-1 ) = ZERO
  428. K2 = MAX( KWTOP, K-1 )
  429. CALL DROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1,
  430. $ S1 )
  431. CALL DROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ),
  432. $ LDB, C1, S1 )
  433. CALL DROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ),
  434. $ 1, C1, S1 )
  435. END DO
  436. * Chase bulges down
  437. ISTARTM = KWTOP
  438. ISTOPM = IHI
  439. K = KWBOT-1
  440. DO WHILE ( K .GE. KWTOP )
  441. IF ( ( K .GE. KWTOP+1 ) .AND. A( K+1, K-1 ) .NE. ZERO ) THEN
  442. * Move double pole block down and remove it
  443. DO K2 = K-1, KWBOT-2
  444. CALL DLAQZ2( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1,
  445. $ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC,
  446. $ LDQC, JW, KWTOP, ZC, LDZC )
  447. END DO
  448. K = K-2
  449. ELSE
  450. * k points to single shift
  451. DO K2 = K, KWBOT-2
  452. * Move shift down
  453. CALL DLARTG( B( K2+1, K2+1 ), B( K2+1, K2 ), C1, S1,
  454. $ TEMP )
  455. B( K2+1, K2+1 ) = TEMP
  456. B( K2+1, K2 ) = ZERO
  457. CALL DROT( K2+2-ISTARTM+1, A( ISTARTM, K2+1 ), 1,
  458. $ A( ISTARTM, K2 ), 1, C1, S1 )
  459. CALL DROT( K2-ISTARTM+1, B( ISTARTM, K2+1 ), 1,
  460. $ B( ISTARTM, K2 ), 1, C1, S1 )
  461. CALL DROT( JW, ZC( 1, K2+1-KWTOP+1 ), 1, ZC( 1,
  462. $ K2-KWTOP+1 ), 1, C1, S1 )
  463. CALL DLARTG( A( K2+1, K2 ), A( K2+2, K2 ), C1, S1,
  464. $ TEMP )
  465. A( K2+1, K2 ) = TEMP
  466. A( K2+2, K2 ) = ZERO
  467. CALL DROT( ISTOPM-K2, A( K2+1, K2+1 ), LDA, A( K2+2,
  468. $ K2+1 ), LDA, C1, S1 )
  469. CALL DROT( ISTOPM-K2, B( K2+1, K2+1 ), LDB, B( K2+2,
  470. $ K2+1 ), LDB, C1, S1 )
  471. CALL DROT( JW, QC( 1, K2+1-KWTOP+1 ), 1, QC( 1,
  472. $ K2+2-KWTOP+1 ), 1, C1, S1 )
  473. END DO
  474. * Remove the shift
  475. CALL DLARTG( B( KWBOT, KWBOT ), B( KWBOT, KWBOT-1 ), C1,
  476. $ S1, TEMP )
  477. B( KWBOT, KWBOT ) = TEMP
  478. B( KWBOT, KWBOT-1 ) = ZERO
  479. CALL DROT( KWBOT-ISTARTM, B( ISTARTM, KWBOT ), 1,
  480. $ B( ISTARTM, KWBOT-1 ), 1, C1, S1 )
  481. CALL DROT( KWBOT-ISTARTM+1, A( ISTARTM, KWBOT ), 1,
  482. $ A( ISTARTM, KWBOT-1 ), 1, C1, S1 )
  483. CALL DROT( JW, ZC( 1, KWBOT-KWTOP+1 ), 1, ZC( 1,
  484. $ KWBOT-1-KWTOP+1 ), 1, C1, S1 )
  485. K = K-1
  486. END IF
  487. END DO
  488. END IF
  489. * Apply Qc and Zc to rest of the matrix
  490. IF ( ILSCHUR ) THEN
  491. ISTARTM = 1
  492. ISTOPM = N
  493. ELSE
  494. ISTARTM = ILO
  495. ISTOPM = IHI
  496. END IF
  497. IF ( ISTOPM-IHI > 0 ) THEN
  498. CALL DGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
  499. $ A( KWTOP, IHI+1 ), LDA, ZERO, WORK, JW )
  500. CALL DLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP,
  501. $ IHI+1 ), LDA )
  502. CALL DGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
  503. $ B( KWTOP, IHI+1 ), LDB, ZERO, WORK, JW )
  504. CALL DLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP,
  505. $ IHI+1 ), LDB )
  506. END IF
  507. IF ( ILQ ) THEN
  508. CALL DGEMM( 'N', 'N', N, JW, JW, ONE, Q( 1, KWTOP ), LDQ, QC,
  509. $ LDQC, ZERO, WORK, N )
  510. CALL DLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ )
  511. END IF
  512. IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN
  513. CALL DGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, A( ISTARTM,
  514. $ KWTOP ), LDA, ZC, LDZC, ZERO, WORK,
  515. $ KWTOP-ISTARTM )
  516. CALL DLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  517. $ A( ISTARTM, KWTOP ), LDA )
  518. CALL DGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, B( ISTARTM,
  519. $ KWTOP ), LDB, ZC, LDZC, ZERO, WORK,
  520. $ KWTOP-ISTARTM )
  521. CALL DLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  522. $ B( ISTARTM, KWTOP ), LDB )
  523. END IF
  524. IF ( ILZ ) THEN
  525. CALL DGEMM( 'N', 'N', N, JW, JW, ONE, Z( 1, KWTOP ), LDZ, ZC,
  526. $ LDZC, ZERO, WORK, N )
  527. CALL DLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ )
  528. END IF
  529. END SUBROUTINE