You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dla_gercond.f 9.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328
  1. *> \brief \b DLA_GERCOND estimates the Skeel condition number for a general matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLA_GERCOND + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gercond.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gercond.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gercond.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
  22. * LDAF, IPIV, CMODE, C,
  23. * INFO, WORK, IWORK )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * INTEGER N, LDA, LDAF, INFO, CMODE
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * ), IWORK( * )
  31. * DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  32. * $ C( * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> DLA_GERCOND estimates the Skeel condition number of op(A) * op2(C)
  42. *> where op2 is determined by CMODE as follows
  43. *> CMODE = 1 op2(C) = C
  44. *> CMODE = 0 op2(C) = I
  45. *> CMODE = -1 op2(C) = inv(C)
  46. *> The Skeel condition number cond(A) = norminf( |inv(A)||A| )
  47. *> is computed by computing scaling factors R such that
  48. *> diag(R)*A*op2(C) is row equilibrated and computing the standard
  49. *> infinity-norm condition number.
  50. *> \endverbatim
  51. *
  52. * Arguments:
  53. * ==========
  54. *
  55. *> \param[in] TRANS
  56. *> \verbatim
  57. *> TRANS is CHARACTER*1
  58. *> Specifies the form of the system of equations:
  59. *> = 'N': A * X = B (No transpose)
  60. *> = 'T': A**T * X = B (Transpose)
  61. *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
  62. *> \endverbatim
  63. *>
  64. *> \param[in] N
  65. *> \verbatim
  66. *> N is INTEGER
  67. *> The number of linear equations, i.e., the order of the
  68. *> matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] A
  72. *> \verbatim
  73. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  74. *> On entry, the N-by-N matrix A.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] LDA
  78. *> \verbatim
  79. *> LDA is INTEGER
  80. *> The leading dimension of the array A. LDA >= max(1,N).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] AF
  84. *> \verbatim
  85. *> AF is DOUBLE PRECISION array, dimension (LDAF,N)
  86. *> The factors L and U from the factorization
  87. *> A = P*L*U as computed by DGETRF.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] LDAF
  91. *> \verbatim
  92. *> LDAF is INTEGER
  93. *> The leading dimension of the array AF. LDAF >= max(1,N).
  94. *> \endverbatim
  95. *>
  96. *> \param[in] IPIV
  97. *> \verbatim
  98. *> IPIV is INTEGER array, dimension (N)
  99. *> The pivot indices from the factorization A = P*L*U
  100. *> as computed by DGETRF; row i of the matrix was interchanged
  101. *> with row IPIV(i).
  102. *> \endverbatim
  103. *>
  104. *> \param[in] CMODE
  105. *> \verbatim
  106. *> CMODE is INTEGER
  107. *> Determines op2(C) in the formula op(A) * op2(C) as follows:
  108. *> CMODE = 1 op2(C) = C
  109. *> CMODE = 0 op2(C) = I
  110. *> CMODE = -1 op2(C) = inv(C)
  111. *> \endverbatim
  112. *>
  113. *> \param[in] C
  114. *> \verbatim
  115. *> C is DOUBLE PRECISION array, dimension (N)
  116. *> The vector C in the formula op(A) * op2(C).
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> = 0: Successful exit.
  123. *> i > 0: The ith argument is invalid.
  124. *> \endverbatim
  125. *>
  126. *> \param[out] WORK
  127. *> \verbatim
  128. *> WORK is DOUBLE PRECISION array, dimension (3*N).
  129. *> Workspace.
  130. *> \endverbatim
  131. *>
  132. *> \param[out] IWORK
  133. *> \verbatim
  134. *> IWORK is INTEGER array, dimension (N).
  135. *> Workspace.
  136. *> \endverbatim
  137. *
  138. * Authors:
  139. * ========
  140. *
  141. *> \author Univ. of Tennessee
  142. *> \author Univ. of California Berkeley
  143. *> \author Univ. of Colorado Denver
  144. *> \author NAG Ltd.
  145. *
  146. *> \ingroup doubleGEcomputational
  147. *
  148. * =====================================================================
  149. DOUBLE PRECISION FUNCTION DLA_GERCOND ( TRANS, N, A, LDA, AF,
  150. $ LDAF, IPIV, CMODE, C,
  151. $ INFO, WORK, IWORK )
  152. *
  153. * -- LAPACK computational routine --
  154. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  155. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  156. *
  157. * .. Scalar Arguments ..
  158. CHARACTER TRANS
  159. INTEGER N, LDA, LDAF, INFO, CMODE
  160. * ..
  161. * .. Array Arguments ..
  162. INTEGER IPIV( * ), IWORK( * )
  163. DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), WORK( * ),
  164. $ C( * )
  165. * ..
  166. *
  167. * =====================================================================
  168. *
  169. * .. Local Scalars ..
  170. LOGICAL NOTRANS
  171. INTEGER KASE, I, J
  172. DOUBLE PRECISION AINVNM, TMP
  173. * ..
  174. * .. Local Arrays ..
  175. INTEGER ISAVE( 3 )
  176. * ..
  177. * .. External Functions ..
  178. LOGICAL LSAME
  179. EXTERNAL LSAME
  180. * ..
  181. * .. External Subroutines ..
  182. EXTERNAL DLACN2, DGETRS, XERBLA
  183. * ..
  184. * .. Intrinsic Functions ..
  185. INTRINSIC ABS, MAX
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. DLA_GERCOND = 0.0D+0
  190. *
  191. INFO = 0
  192. NOTRANS = LSAME( TRANS, 'N' )
  193. IF ( .NOT. NOTRANS .AND. .NOT. LSAME(TRANS, 'T')
  194. $ .AND. .NOT. LSAME(TRANS, 'C') ) THEN
  195. INFO = -1
  196. ELSE IF( N.LT.0 ) THEN
  197. INFO = -2
  198. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  199. INFO = -4
  200. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  201. INFO = -6
  202. END IF
  203. IF( INFO.NE.0 ) THEN
  204. CALL XERBLA( 'DLA_GERCOND', -INFO )
  205. RETURN
  206. END IF
  207. IF( N.EQ.0 ) THEN
  208. DLA_GERCOND = 1.0D+0
  209. RETURN
  210. END IF
  211. *
  212. * Compute the equilibration matrix R such that
  213. * inv(R)*A*C has unit 1-norm.
  214. *
  215. IF (NOTRANS) THEN
  216. DO I = 1, N
  217. TMP = 0.0D+0
  218. IF ( CMODE .EQ. 1 ) THEN
  219. DO J = 1, N
  220. TMP = TMP + ABS( A( I, J ) * C( J ) )
  221. END DO
  222. ELSE IF ( CMODE .EQ. 0 ) THEN
  223. DO J = 1, N
  224. TMP = TMP + ABS( A( I, J ) )
  225. END DO
  226. ELSE
  227. DO J = 1, N
  228. TMP = TMP + ABS( A( I, J ) / C( J ) )
  229. END DO
  230. END IF
  231. WORK( 2*N+I ) = TMP
  232. END DO
  233. ELSE
  234. DO I = 1, N
  235. TMP = 0.0D+0
  236. IF ( CMODE .EQ. 1 ) THEN
  237. DO J = 1, N
  238. TMP = TMP + ABS( A( J, I ) * C( J ) )
  239. END DO
  240. ELSE IF ( CMODE .EQ. 0 ) THEN
  241. DO J = 1, N
  242. TMP = TMP + ABS( A( J, I ) )
  243. END DO
  244. ELSE
  245. DO J = 1, N
  246. TMP = TMP + ABS( A( J, I ) / C( J ) )
  247. END DO
  248. END IF
  249. WORK( 2*N+I ) = TMP
  250. END DO
  251. END IF
  252. *
  253. * Estimate the norm of inv(op(A)).
  254. *
  255. AINVNM = 0.0D+0
  256. KASE = 0
  257. 10 CONTINUE
  258. CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
  259. IF( KASE.NE.0 ) THEN
  260. IF( KASE.EQ.2 ) THEN
  261. *
  262. * Multiply by R.
  263. *
  264. DO I = 1, N
  265. WORK(I) = WORK(I) * WORK(2*N+I)
  266. END DO
  267. IF (NOTRANS) THEN
  268. CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  269. $ WORK, N, INFO )
  270. ELSE
  271. CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
  272. $ WORK, N, INFO )
  273. END IF
  274. *
  275. * Multiply by inv(C).
  276. *
  277. IF ( CMODE .EQ. 1 ) THEN
  278. DO I = 1, N
  279. WORK( I ) = WORK( I ) / C( I )
  280. END DO
  281. ELSE IF ( CMODE .EQ. -1 ) THEN
  282. DO I = 1, N
  283. WORK( I ) = WORK( I ) * C( I )
  284. END DO
  285. END IF
  286. ELSE
  287. *
  288. * Multiply by inv(C**T).
  289. *
  290. IF ( CMODE .EQ. 1 ) THEN
  291. DO I = 1, N
  292. WORK( I ) = WORK( I ) / C( I )
  293. END DO
  294. ELSE IF ( CMODE .EQ. -1 ) THEN
  295. DO I = 1, N
  296. WORK( I ) = WORK( I ) * C( I )
  297. END DO
  298. END IF
  299. IF (NOTRANS) THEN
  300. CALL DGETRS( 'Transpose', N, 1, AF, LDAF, IPIV,
  301. $ WORK, N, INFO )
  302. ELSE
  303. CALL DGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
  304. $ WORK, N, INFO )
  305. END IF
  306. *
  307. * Multiply by R.
  308. *
  309. DO I = 1, N
  310. WORK( I ) = WORK( I ) * WORK( 2*N+I )
  311. END DO
  312. END IF
  313. GO TO 10
  314. END IF
  315. *
  316. * Compute the estimate of the reciprocal condition number.
  317. *
  318. IF( AINVNM .NE. 0.0D+0 )
  319. $ DLA_GERCOND = ( 1.0D+0 / AINVNM )
  320. *
  321. RETURN
  322. *
  323. * End of DLA_GERCOND
  324. *
  325. END