You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zspmv.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. *> \brief \b ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric packed matrix
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSPMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zspmv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zspmv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zspmv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INCX, INCY, N
  26. * COMPLEX*16 ALPHA, BETA
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 AP( * ), X( * ), Y( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSPMV performs the matrix-vector operation
  39. *>
  40. *> y := alpha*A*x + beta*y,
  41. *>
  42. *> where alpha and beta are scalars, x and y are n element vectors and
  43. *> A is an n by n symmetric matrix, supplied in packed form.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> On entry, UPLO specifies whether the upper or lower
  53. *> triangular part of the matrix A is supplied in the packed
  54. *> array AP as follows:
  55. *>
  56. *> UPLO = 'U' or 'u' The upper triangular part of A is
  57. *> supplied in AP.
  58. *>
  59. *> UPLO = 'L' or 'l' The lower triangular part of A is
  60. *> supplied in AP.
  61. *>
  62. *> Unchanged on exit.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> On entry, N specifies the order of the matrix A.
  69. *> N must be at least zero.
  70. *> Unchanged on exit.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ALPHA
  74. *> \verbatim
  75. *> ALPHA is COMPLEX*16
  76. *> On entry, ALPHA specifies the scalar alpha.
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] AP
  81. *> \verbatim
  82. *> AP is COMPLEX*16 array, dimension at least
  83. *> ( ( N*( N + 1 ) )/2 ).
  84. *> Before entry, with UPLO = 'U' or 'u', the array AP must
  85. *> contain the upper triangular part of the symmetric matrix
  86. *> packed sequentially, column by column, so that AP( 1 )
  87. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  88. *> and a( 2, 2 ) respectively, and so on.
  89. *> Before entry, with UPLO = 'L' or 'l', the array AP must
  90. *> contain the lower triangular part of the symmetric matrix
  91. *> packed sequentially, column by column, so that AP( 1 )
  92. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  93. *> and a( 3, 1 ) respectively, and so on.
  94. *> Unchanged on exit.
  95. *> \endverbatim
  96. *>
  97. *> \param[in] X
  98. *> \verbatim
  99. *> X is COMPLEX*16 array, dimension at least
  100. *> ( 1 + ( N - 1 )*abs( INCX ) ).
  101. *> Before entry, the incremented array X must contain the N-
  102. *> element vector x.
  103. *> Unchanged on exit.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] INCX
  107. *> \verbatim
  108. *> INCX is INTEGER
  109. *> On entry, INCX specifies the increment for the elements of
  110. *> X. INCX must not be zero.
  111. *> Unchanged on exit.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] BETA
  115. *> \verbatim
  116. *> BETA is COMPLEX*16
  117. *> On entry, BETA specifies the scalar beta. When BETA is
  118. *> supplied as zero then Y need not be set on input.
  119. *> Unchanged on exit.
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] Y
  123. *> \verbatim
  124. *> Y is COMPLEX*16 array, dimension at least
  125. *> ( 1 + ( N - 1 )*abs( INCY ) ).
  126. *> Before entry, the incremented array Y must contain the n
  127. *> element vector y. On exit, Y is overwritten by the updated
  128. *> vector y.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] INCY
  132. *> \verbatim
  133. *> INCY is INTEGER
  134. *> On entry, INCY specifies the increment for the elements of
  135. *> Y. INCY must not be zero.
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *
  139. * Authors:
  140. * ========
  141. *
  142. *> \author Univ. of Tennessee
  143. *> \author Univ. of California Berkeley
  144. *> \author Univ. of Colorado Denver
  145. *> \author NAG Ltd.
  146. *
  147. *> \date December 2016
  148. *
  149. *> \ingroup complex16OTHERauxiliary
  150. *
  151. * =====================================================================
  152. SUBROUTINE ZSPMV( UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY )
  153. *
  154. * -- LAPACK auxiliary routine (version 3.7.0) --
  155. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  156. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  157. * December 2016
  158. *
  159. * .. Scalar Arguments ..
  160. CHARACTER UPLO
  161. INTEGER INCX, INCY, N
  162. COMPLEX*16 ALPHA, BETA
  163. * ..
  164. * .. Array Arguments ..
  165. COMPLEX*16 AP( * ), X( * ), Y( * )
  166. * ..
  167. *
  168. * =====================================================================
  169. *
  170. * .. Parameters ..
  171. COMPLEX*16 ONE
  172. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  173. COMPLEX*16 ZERO
  174. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  175. * ..
  176. * .. Local Scalars ..
  177. INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
  178. COMPLEX*16 TEMP1, TEMP2
  179. * ..
  180. * .. External Functions ..
  181. LOGICAL LSAME
  182. EXTERNAL LSAME
  183. * ..
  184. * .. External Subroutines ..
  185. EXTERNAL XERBLA
  186. * ..
  187. * .. Executable Statements ..
  188. *
  189. * Test the input parameters.
  190. *
  191. INFO = 0
  192. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  193. INFO = 1
  194. ELSE IF( N.LT.0 ) THEN
  195. INFO = 2
  196. ELSE IF( INCX.EQ.0 ) THEN
  197. INFO = 6
  198. ELSE IF( INCY.EQ.0 ) THEN
  199. INFO = 9
  200. END IF
  201. IF( INFO.NE.0 ) THEN
  202. CALL XERBLA( 'ZSPMV ', INFO )
  203. RETURN
  204. END IF
  205. *
  206. * Quick return if possible.
  207. *
  208. IF( ( N.EQ.0 ) .OR. ( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ONE ) ) )
  209. $ RETURN
  210. *
  211. * Set up the start points in X and Y.
  212. *
  213. IF( INCX.GT.0 ) THEN
  214. KX = 1
  215. ELSE
  216. KX = 1 - ( N-1 )*INCX
  217. END IF
  218. IF( INCY.GT.0 ) THEN
  219. KY = 1
  220. ELSE
  221. KY = 1 - ( N-1 )*INCY
  222. END IF
  223. *
  224. * Start the operations. In this version the elements of the array AP
  225. * are accessed sequentially with one pass through AP.
  226. *
  227. * First form y := beta*y.
  228. *
  229. IF( BETA.NE.ONE ) THEN
  230. IF( INCY.EQ.1 ) THEN
  231. IF( BETA.EQ.ZERO ) THEN
  232. DO 10 I = 1, N
  233. Y( I ) = ZERO
  234. 10 CONTINUE
  235. ELSE
  236. DO 20 I = 1, N
  237. Y( I ) = BETA*Y( I )
  238. 20 CONTINUE
  239. END IF
  240. ELSE
  241. IY = KY
  242. IF( BETA.EQ.ZERO ) THEN
  243. DO 30 I = 1, N
  244. Y( IY ) = ZERO
  245. IY = IY + INCY
  246. 30 CONTINUE
  247. ELSE
  248. DO 40 I = 1, N
  249. Y( IY ) = BETA*Y( IY )
  250. IY = IY + INCY
  251. 40 CONTINUE
  252. END IF
  253. END IF
  254. END IF
  255. IF( ALPHA.EQ.ZERO )
  256. $ RETURN
  257. KK = 1
  258. IF( LSAME( UPLO, 'U' ) ) THEN
  259. *
  260. * Form y when AP contains the upper triangle.
  261. *
  262. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  263. DO 60 J = 1, N
  264. TEMP1 = ALPHA*X( J )
  265. TEMP2 = ZERO
  266. K = KK
  267. DO 50 I = 1, J - 1
  268. Y( I ) = Y( I ) + TEMP1*AP( K )
  269. TEMP2 = TEMP2 + AP( K )*X( I )
  270. K = K + 1
  271. 50 CONTINUE
  272. Y( J ) = Y( J ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  273. KK = KK + J
  274. 60 CONTINUE
  275. ELSE
  276. JX = KX
  277. JY = KY
  278. DO 80 J = 1, N
  279. TEMP1 = ALPHA*X( JX )
  280. TEMP2 = ZERO
  281. IX = KX
  282. IY = KY
  283. DO 70 K = KK, KK + J - 2
  284. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  285. TEMP2 = TEMP2 + AP( K )*X( IX )
  286. IX = IX + INCX
  287. IY = IY + INCY
  288. 70 CONTINUE
  289. Y( JY ) = Y( JY ) + TEMP1*AP( KK+J-1 ) + ALPHA*TEMP2
  290. JX = JX + INCX
  291. JY = JY + INCY
  292. KK = KK + J
  293. 80 CONTINUE
  294. END IF
  295. ELSE
  296. *
  297. * Form y when AP contains the lower triangle.
  298. *
  299. IF( ( INCX.EQ.1 ) .AND. ( INCY.EQ.1 ) ) THEN
  300. DO 100 J = 1, N
  301. TEMP1 = ALPHA*X( J )
  302. TEMP2 = ZERO
  303. Y( J ) = Y( J ) + TEMP1*AP( KK )
  304. K = KK + 1
  305. DO 90 I = J + 1, N
  306. Y( I ) = Y( I ) + TEMP1*AP( K )
  307. TEMP2 = TEMP2 + AP( K )*X( I )
  308. K = K + 1
  309. 90 CONTINUE
  310. Y( J ) = Y( J ) + ALPHA*TEMP2
  311. KK = KK + ( N-J+1 )
  312. 100 CONTINUE
  313. ELSE
  314. JX = KX
  315. JY = KY
  316. DO 120 J = 1, N
  317. TEMP1 = ALPHA*X( JX )
  318. TEMP2 = ZERO
  319. Y( JY ) = Y( JY ) + TEMP1*AP( KK )
  320. IX = JX
  321. IY = JY
  322. DO 110 K = KK + 1, KK + N - J
  323. IX = IX + INCX
  324. IY = IY + INCY
  325. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  326. TEMP2 = TEMP2 + AP( K )*X( IX )
  327. 110 CONTINUE
  328. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  329. JX = JX + INCX
  330. JY = JY + INCY
  331. KK = KK + ( N-J+1 )
  332. 120 CONTINUE
  333. END IF
  334. END IF
  335. *
  336. RETURN
  337. *
  338. * End of ZSPMV
  339. *
  340. END