You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zgebd2.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. *> \brief \b ZGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZGEBD2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgebd2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgebd2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgebd2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, M, N
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION D( * ), E( * )
  28. * COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZGEBD2 reduces a complex general m by n matrix A to upper or lower
  38. *> real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
  39. *>
  40. *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] M
  47. *> \verbatim
  48. *> M is INTEGER
  49. *> The number of rows in the matrix A. M >= 0.
  50. *> \endverbatim
  51. *>
  52. *> \param[in] N
  53. *> \verbatim
  54. *> N is INTEGER
  55. *> The number of columns in the matrix A. N >= 0.
  56. *> \endverbatim
  57. *>
  58. *> \param[in,out] A
  59. *> \verbatim
  60. *> A is COMPLEX*16 array, dimension (LDA,N)
  61. *> On entry, the m by n general matrix to be reduced.
  62. *> On exit,
  63. *> if m >= n, the diagonal and the first superdiagonal are
  64. *> overwritten with the upper bidiagonal matrix B; the
  65. *> elements below the diagonal, with the array TAUQ, represent
  66. *> the unitary matrix Q as a product of elementary
  67. *> reflectors, and the elements above the first superdiagonal,
  68. *> with the array TAUP, represent the unitary matrix P as
  69. *> a product of elementary reflectors;
  70. *> if m < n, the diagonal and the first subdiagonal are
  71. *> overwritten with the lower bidiagonal matrix B; the
  72. *> elements below the first subdiagonal, with the array TAUQ,
  73. *> represent the unitary matrix Q as a product of
  74. *> elementary reflectors, and the elements above the diagonal,
  75. *> with the array TAUP, represent the unitary matrix P as
  76. *> a product of elementary reflectors.
  77. *> See Further Details.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDA
  81. *> \verbatim
  82. *> LDA is INTEGER
  83. *> The leading dimension of the array A. LDA >= max(1,M).
  84. *> \endverbatim
  85. *>
  86. *> \param[out] D
  87. *> \verbatim
  88. *> D is DOUBLE PRECISION array, dimension (min(M,N))
  89. *> The diagonal elements of the bidiagonal matrix B:
  90. *> D(i) = A(i,i).
  91. *> \endverbatim
  92. *>
  93. *> \param[out] E
  94. *> \verbatim
  95. *> E is DOUBLE PRECISION array, dimension (min(M,N)-1)
  96. *> The off-diagonal elements of the bidiagonal matrix B:
  97. *> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
  98. *> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
  99. *> \endverbatim
  100. *>
  101. *> \param[out] TAUQ
  102. *> \verbatim
  103. *> TAUQ is COMPLEX*16 array, dimension (min(M,N))
  104. *> The scalar factors of the elementary reflectors which
  105. *> represent the unitary matrix Q. See Further Details.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] TAUP
  109. *> \verbatim
  110. *> TAUP is COMPLEX*16 array, dimension (min(M,N))
  111. *> The scalar factors of the elementary reflectors which
  112. *> represent the unitary matrix P. See Further Details.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] WORK
  116. *> \verbatim
  117. *> WORK is COMPLEX*16 array, dimension (max(M,N))
  118. *> \endverbatim
  119. *>
  120. *> \param[out] INFO
  121. *> \verbatim
  122. *> INFO is INTEGER
  123. *> = 0: successful exit
  124. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date June 2017
  136. *
  137. *> \ingroup complex16GEcomputational
  138. *
  139. *> \par Further Details:
  140. * =====================
  141. *>
  142. *> \verbatim
  143. *>
  144. *> The matrices Q and P are represented as products of elementary
  145. *> reflectors:
  146. *>
  147. *> If m >= n,
  148. *>
  149. *> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
  150. *>
  151. *> Each H(i) and G(i) has the form:
  152. *>
  153. *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
  154. *>
  155. *> where tauq and taup are complex scalars, and v and u are complex
  156. *> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
  157. *> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
  158. *> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
  159. *>
  160. *> If m < n,
  161. *>
  162. *> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
  163. *>
  164. *> Each H(i) and G(i) has the form:
  165. *>
  166. *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
  167. *>
  168. *> where tauq and taup are complex scalars, v and u are complex vectors;
  169. *> v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
  170. *> u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
  171. *> tauq is stored in TAUQ(i) and taup in TAUP(i).
  172. *>
  173. *> The contents of A on exit are illustrated by the following examples:
  174. *>
  175. *> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
  176. *>
  177. *> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
  178. *> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
  179. *> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
  180. *> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
  181. *> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
  182. *> ( v1 v2 v3 v4 v5 )
  183. *>
  184. *> where d and e denote diagonal and off-diagonal elements of B, vi
  185. *> denotes an element of the vector defining H(i), and ui an element of
  186. *> the vector defining G(i).
  187. *> \endverbatim
  188. *>
  189. * =====================================================================
  190. SUBROUTINE ZGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
  191. *
  192. * -- LAPACK computational routine (version 3.7.1) --
  193. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  194. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  195. * June 2017
  196. *
  197. * .. Scalar Arguments ..
  198. INTEGER INFO, LDA, M, N
  199. * ..
  200. * .. Array Arguments ..
  201. DOUBLE PRECISION D( * ), E( * )
  202. COMPLEX*16 A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
  203. * ..
  204. *
  205. * =====================================================================
  206. *
  207. * .. Parameters ..
  208. COMPLEX*16 ZERO, ONE
  209. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ),
  210. $ ONE = ( 1.0D+0, 0.0D+0 ) )
  211. * ..
  212. * .. Local Scalars ..
  213. INTEGER I
  214. COMPLEX*16 ALPHA
  215. * ..
  216. * .. External Subroutines ..
  217. EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
  218. * ..
  219. * .. Intrinsic Functions ..
  220. INTRINSIC DCONJG, MAX, MIN
  221. * ..
  222. * .. Executable Statements ..
  223. *
  224. * Test the input parameters
  225. *
  226. INFO = 0
  227. IF( M.LT.0 ) THEN
  228. INFO = -1
  229. ELSE IF( N.LT.0 ) THEN
  230. INFO = -2
  231. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  232. INFO = -4
  233. END IF
  234. IF( INFO.LT.0 ) THEN
  235. CALL XERBLA( 'ZGEBD2', -INFO )
  236. RETURN
  237. END IF
  238. *
  239. IF( M.GE.N ) THEN
  240. *
  241. * Reduce to upper bidiagonal form
  242. *
  243. DO 10 I = 1, N
  244. *
  245. * Generate elementary reflector H(i) to annihilate A(i+1:m,i)
  246. *
  247. ALPHA = A( I, I )
  248. CALL ZLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
  249. $ TAUQ( I ) )
  250. D( I ) = ALPHA
  251. A( I, I ) = ONE
  252. *
  253. * Apply H(i)**H to A(i:m,i+1:n) from the left
  254. *
  255. IF( I.LT.N )
  256. $ CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
  257. $ DCONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
  258. A( I, I ) = D( I )
  259. *
  260. IF( I.LT.N ) THEN
  261. *
  262. * Generate elementary reflector G(i) to annihilate
  263. * A(i,i+2:n)
  264. *
  265. CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  266. ALPHA = A( I, I+1 )
  267. CALL ZLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ), LDA,
  268. $ TAUP( I ) )
  269. E( I ) = ALPHA
  270. A( I, I+1 ) = ONE
  271. *
  272. * Apply G(i) to A(i+1:m,i+1:n) from the right
  273. *
  274. CALL ZLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
  275. $ TAUP( I ), A( I+1, I+1 ), LDA, WORK )
  276. CALL ZLACGV( N-I, A( I, I+1 ), LDA )
  277. A( I, I+1 ) = E( I )
  278. ELSE
  279. TAUP( I ) = ZERO
  280. END IF
  281. 10 CONTINUE
  282. ELSE
  283. *
  284. * Reduce to lower bidiagonal form
  285. *
  286. DO 20 I = 1, M
  287. *
  288. * Generate elementary reflector G(i) to annihilate A(i,i+1:n)
  289. *
  290. CALL ZLACGV( N-I+1, A( I, I ), LDA )
  291. ALPHA = A( I, I )
  292. CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
  293. $ TAUP( I ) )
  294. D( I ) = ALPHA
  295. A( I, I ) = ONE
  296. *
  297. * Apply G(i) to A(i+1:m,i:n) from the right
  298. *
  299. IF( I.LT.M )
  300. $ CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
  301. $ TAUP( I ), A( I+1, I ), LDA, WORK )
  302. CALL ZLACGV( N-I+1, A( I, I ), LDA )
  303. A( I, I ) = D( I )
  304. *
  305. IF( I.LT.M ) THEN
  306. *
  307. * Generate elementary reflector H(i) to annihilate
  308. * A(i+2:m,i)
  309. *
  310. ALPHA = A( I+1, I )
  311. CALL ZLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
  312. $ TAUQ( I ) )
  313. E( I ) = ALPHA
  314. A( I+1, I ) = ONE
  315. *
  316. * Apply H(i)**H to A(i+1:m,i+1:n) from the left
  317. *
  318. CALL ZLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
  319. $ DCONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
  320. $ WORK )
  321. A( I+1, I ) = E( I )
  322. ELSE
  323. TAUQ( I ) = ZERO
  324. END IF
  325. 20 CONTINUE
  326. END IF
  327. RETURN
  328. *
  329. * End of ZGEBD2
  330. *
  331. END