|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- *> \brief \b SLASR applies a sequence of plane rotations to a general rectangular matrix.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLASR + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasr.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasr.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasr.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
- *
- * .. Scalar Arguments ..
- * CHARACTER DIRECT, PIVOT, SIDE
- * INTEGER LDA, M, N
- * ..
- * .. Array Arguments ..
- * REAL A( LDA, * ), C( * ), S( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLASR applies a sequence of plane rotations to a real matrix A,
- *> from either the left or the right.
- *>
- *> When SIDE = 'L', the transformation takes the form
- *>
- *> A := P*A
- *>
- *> and when SIDE = 'R', the transformation takes the form
- *>
- *> A := A*P**T
- *>
- *> where P is an orthogonal matrix consisting of a sequence of z plane
- *> rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
- *> and P**T is the transpose of P.
- *>
- *> When DIRECT = 'F' (Forward sequence), then
- *>
- *> P = P(z-1) * ... * P(2) * P(1)
- *>
- *> and when DIRECT = 'B' (Backward sequence), then
- *>
- *> P = P(1) * P(2) * ... * P(z-1)
- *>
- *> where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
- *>
- *> R(k) = ( c(k) s(k) )
- *> = ( -s(k) c(k) ).
- *>
- *> When PIVOT = 'V' (Variable pivot), the rotation is performed
- *> for the plane (k,k+1), i.e., P(k) has the form
- *>
- *> P(k) = ( 1 )
- *> ( ... )
- *> ( 1 )
- *> ( c(k) s(k) )
- *> ( -s(k) c(k) )
- *> ( 1 )
- *> ( ... )
- *> ( 1 )
- *>
- *> where R(k) appears as a rank-2 modification to the identity matrix in
- *> rows and columns k and k+1.
- *>
- *> When PIVOT = 'T' (Top pivot), the rotation is performed for the
- *> plane (1,k+1), so P(k) has the form
- *>
- *> P(k) = ( c(k) s(k) )
- *> ( 1 )
- *> ( ... )
- *> ( 1 )
- *> ( -s(k) c(k) )
- *> ( 1 )
- *> ( ... )
- *> ( 1 )
- *>
- *> where R(k) appears in rows and columns 1 and k+1.
- *>
- *> Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
- *> performed for the plane (k,z), giving P(k) the form
- *>
- *> P(k) = ( 1 )
- *> ( ... )
- *> ( 1 )
- *> ( c(k) s(k) )
- *> ( 1 )
- *> ( ... )
- *> ( 1 )
- *> ( -s(k) c(k) )
- *>
- *> where R(k) appears in rows and columns k and z. The rotations are
- *> performed without ever forming P(k) explicitly.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] SIDE
- *> \verbatim
- *> SIDE is CHARACTER*1
- *> Specifies whether the plane rotation matrix P is applied to
- *> A on the left or the right.
- *> = 'L': Left, compute A := P*A
- *> = 'R': Right, compute A:= A*P**T
- *> \endverbatim
- *>
- *> \param[in] PIVOT
- *> \verbatim
- *> PIVOT is CHARACTER*1
- *> Specifies the plane for which P(k) is a plane rotation
- *> matrix.
- *> = 'V': Variable pivot, the plane (k,k+1)
- *> = 'T': Top pivot, the plane (1,k+1)
- *> = 'B': Bottom pivot, the plane (k,z)
- *> \endverbatim
- *>
- *> \param[in] DIRECT
- *> \verbatim
- *> DIRECT is CHARACTER*1
- *> Specifies whether P is a forward or backward sequence of
- *> plane rotations.
- *> = 'F': Forward, P = P(z-1)*...*P(2)*P(1)
- *> = 'B': Backward, P = P(1)*P(2)*...*P(z-1)
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. If m <= 1, an immediate
- *> return is effected.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrix A. If n <= 1, an
- *> immediate return is effected.
- *> \endverbatim
- *>
- *> \param[in] C
- *> \verbatim
- *> C is REAL array, dimension
- *> (M-1) if SIDE = 'L'
- *> (N-1) if SIDE = 'R'
- *> The cosines c(k) of the plane rotations.
- *> \endverbatim
- *>
- *> \param[in] S
- *> \verbatim
- *> S is REAL array, dimension
- *> (M-1) if SIDE = 'L'
- *> (N-1) if SIDE = 'R'
- *> The sines s(k) of the plane rotations. The 2-by-2 plane
- *> rotation part of the matrix P(k), R(k), has the form
- *> R(k) = ( c(k) s(k) )
- *> ( -s(k) c(k) ).
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> The M-by-N matrix A. On exit, A is overwritten by P*A if
- *> SIDE = 'R' or by A*P**T if SIDE = 'L'.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup OTHERauxiliary
- *
- * =====================================================================
- SUBROUTINE SLASR( SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
- *
- * -- LAPACK auxiliary routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- CHARACTER DIRECT, PIVOT, SIDE
- INTEGER LDA, M, N
- * ..
- * .. Array Arguments ..
- REAL A( LDA, * ), C( * ), S( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ONE, ZERO
- PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
- * ..
- * .. Local Scalars ..
- INTEGER I, INFO, J
- REAL CTEMP, STEMP, TEMP
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC MAX
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- INFO = 0
- IF( .NOT.( LSAME( SIDE, 'L' ) .OR. LSAME( SIDE, 'R' ) ) ) THEN
- INFO = 1
- ELSE IF( .NOT.( LSAME( PIVOT, 'V' ) .OR. LSAME( PIVOT,
- $ 'T' ) .OR. LSAME( PIVOT, 'B' ) ) ) THEN
- INFO = 2
- ELSE IF( .NOT.( LSAME( DIRECT, 'F' ) .OR. LSAME( DIRECT, 'B' ) ) )
- $ THEN
- INFO = 3
- ELSE IF( M.LT.0 ) THEN
- INFO = 4
- ELSE IF( N.LT.0 ) THEN
- INFO = 5
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = 9
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SLASR ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible
- *
- IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
- $ RETURN
- IF( LSAME( SIDE, 'L' ) ) THEN
- *
- * Form P * A
- *
- IF( LSAME( PIVOT, 'V' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 20 J = 1, M - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 10 I = 1, N
- TEMP = A( J+1, I )
- A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
- A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 40 J = M - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 30 I = 1, N
- TEMP = A( J+1, I )
- A( J+1, I ) = CTEMP*TEMP - STEMP*A( J, I )
- A( J, I ) = STEMP*TEMP + CTEMP*A( J, I )
- 30 CONTINUE
- END IF
- 40 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 60 J = 2, M
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 50 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
- A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 80 J = M, 2, -1
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 70 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = CTEMP*TEMP - STEMP*A( 1, I )
- A( 1, I ) = STEMP*TEMP + CTEMP*A( 1, I )
- 70 CONTINUE
- END IF
- 80 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 100 J = 1, M - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 90 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
- A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
- 90 CONTINUE
- END IF
- 100 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 120 J = M - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 110 I = 1, N
- TEMP = A( J, I )
- A( J, I ) = STEMP*A( M, I ) + CTEMP*TEMP
- A( M, I ) = CTEMP*A( M, I ) - STEMP*TEMP
- 110 CONTINUE
- END IF
- 120 CONTINUE
- END IF
- END IF
- ELSE IF( LSAME( SIDE, 'R' ) ) THEN
- *
- * Form A * P**T
- *
- IF( LSAME( PIVOT, 'V' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 140 J = 1, N - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 130 I = 1, M
- TEMP = A( I, J+1 )
- A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
- A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
- 130 CONTINUE
- END IF
- 140 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 160 J = N - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 150 I = 1, M
- TEMP = A( I, J+1 )
- A( I, J+1 ) = CTEMP*TEMP - STEMP*A( I, J )
- A( I, J ) = STEMP*TEMP + CTEMP*A( I, J )
- 150 CONTINUE
- END IF
- 160 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'T' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 180 J = 2, N
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 170 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
- A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
- 170 CONTINUE
- END IF
- 180 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 200 J = N, 2, -1
- CTEMP = C( J-1 )
- STEMP = S( J-1 )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 190 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = CTEMP*TEMP - STEMP*A( I, 1 )
- A( I, 1 ) = STEMP*TEMP + CTEMP*A( I, 1 )
- 190 CONTINUE
- END IF
- 200 CONTINUE
- END IF
- ELSE IF( LSAME( PIVOT, 'B' ) ) THEN
- IF( LSAME( DIRECT, 'F' ) ) THEN
- DO 220 J = 1, N - 1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 210 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
- A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
- 210 CONTINUE
- END IF
- 220 CONTINUE
- ELSE IF( LSAME( DIRECT, 'B' ) ) THEN
- DO 240 J = N - 1, 1, -1
- CTEMP = C( J )
- STEMP = S( J )
- IF( ( CTEMP.NE.ONE ) .OR. ( STEMP.NE.ZERO ) ) THEN
- DO 230 I = 1, M
- TEMP = A( I, J )
- A( I, J ) = STEMP*A( I, N ) + CTEMP*TEMP
- A( I, N ) = CTEMP*A( I, N ) - STEMP*TEMP
- 230 CONTINUE
- END IF
- 240 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of SLASR
- *
- END
|