You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarfb.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. *> \brief \b DLARFB applies a block reflector or its transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> DLARFB applies a real block reflector H or its transpose H**T to a
  40. *> real m by n matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**T from the Left
  50. *> = 'R': apply H or H**T from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'T': apply H**T (Transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] V
  98. *> \verbatim
  99. *> V is DOUBLE PRECISION array, dimension
  100. *> (LDV,K) if STOREV = 'C'
  101. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  102. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  103. *> The matrix V. See Further Details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDV
  107. *> \verbatim
  108. *> LDV is INTEGER
  109. *> The leading dimension of the array V.
  110. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  111. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  112. *> if STOREV = 'R', LDV >= K.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] T
  116. *> \verbatim
  117. *> T is DOUBLE PRECISION array, dimension (LDT,K)
  118. *> The triangular k by k matrix T in the representation of the
  119. *> block reflector.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] C
  129. *> \verbatim
  130. *> C is DOUBLE PRECISION array, dimension (LDC,N)
  131. *> On entry, the m by n matrix C.
  132. *> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDC
  136. *> \verbatim
  137. *> LDC is INTEGER
  138. *> The leading dimension of the array C. LDC >= max(1,M).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDWORK
  147. *> \verbatim
  148. *> LDWORK is INTEGER
  149. *> The leading dimension of the array WORK.
  150. *> If SIDE = 'L', LDWORK >= max(1,N);
  151. *> if SIDE = 'R', LDWORK >= max(1,M).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date June 2013
  163. *
  164. *> \ingroup doubleOTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE DLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.7.0) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * June 2013
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER DIRECT, SIDE, STOREV, TRANS
  205. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  206. * ..
  207. * .. Array Arguments ..
  208. DOUBLE PRECISION C( LDC, * ), T( LDT, * ), V( LDV, * ),
  209. $ WORK( LDWORK, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. DOUBLE PRECISION ONE
  216. PARAMETER ( ONE = 1.0D+0 )
  217. * ..
  218. * .. Local Scalars ..
  219. CHARACTER TRANST
  220. INTEGER I, J
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. EXTERNAL LSAME
  225. * ..
  226. * .. External Subroutines ..
  227. EXTERNAL DCOPY, DGEMM, DTRMM
  228. * ..
  229. * .. Executable Statements ..
  230. *
  231. * Quick return if possible
  232. *
  233. IF( M.LE.0 .OR. N.LE.0 )
  234. $ RETURN
  235. *
  236. IF( LSAME( TRANS, 'N' ) ) THEN
  237. TRANST = 'T'
  238. ELSE
  239. TRANST = 'N'
  240. END IF
  241. *
  242. IF( LSAME( STOREV, 'C' ) ) THEN
  243. *
  244. IF( LSAME( DIRECT, 'F' ) ) THEN
  245. *
  246. * Let V = ( V1 ) (first K rows)
  247. * ( V2 )
  248. * where V1 is unit lower triangular.
  249. *
  250. IF( LSAME( SIDE, 'L' ) ) THEN
  251. *
  252. * Form H * C or H**T * C where C = ( C1 )
  253. * ( C2 )
  254. *
  255. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  256. *
  257. * W := C1**T
  258. *
  259. DO 10 J = 1, K
  260. CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  261. 10 CONTINUE
  262. *
  263. * W := W * V1
  264. *
  265. CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  266. $ K, ONE, V, LDV, WORK, LDWORK )
  267. IF( M.GT.K ) THEN
  268. *
  269. * W := W + C2**T * V2
  270. *
  271. CALL DGEMM( 'Transpose', 'No transpose', N, K, M-K,
  272. $ ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
  273. $ ONE, WORK, LDWORK )
  274. END IF
  275. *
  276. * W := W * T**T or W * T
  277. *
  278. CALL DTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  279. $ ONE, T, LDT, WORK, LDWORK )
  280. *
  281. * C := C - V * W**T
  282. *
  283. IF( M.GT.K ) THEN
  284. *
  285. * C2 := C2 - V2 * W**T
  286. *
  287. CALL DGEMM( 'No transpose', 'Transpose', M-K, N, K,
  288. $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
  289. $ C( K+1, 1 ), LDC )
  290. END IF
  291. *
  292. * W := W * V1**T
  293. *
  294. CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  295. $ ONE, V, LDV, WORK, LDWORK )
  296. *
  297. * C1 := C1 - W**T
  298. *
  299. DO 30 J = 1, K
  300. DO 20 I = 1, N
  301. C( J, I ) = C( J, I ) - WORK( I, J )
  302. 20 CONTINUE
  303. 30 CONTINUE
  304. *
  305. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  306. *
  307. * Form C * H or C * H**T where C = ( C1 C2 )
  308. *
  309. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  310. *
  311. * W := C1
  312. *
  313. DO 40 J = 1, K
  314. CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  315. 40 CONTINUE
  316. *
  317. * W := W * V1
  318. *
  319. CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  320. $ K, ONE, V, LDV, WORK, LDWORK )
  321. IF( N.GT.K ) THEN
  322. *
  323. * W := W + C2 * V2
  324. *
  325. CALL DGEMM( 'No transpose', 'No transpose', M, K, N-K,
  326. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  327. $ ONE, WORK, LDWORK )
  328. END IF
  329. *
  330. * W := W * T or W * T**T
  331. *
  332. CALL DTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  333. $ ONE, T, LDT, WORK, LDWORK )
  334. *
  335. * C := C - W * V**T
  336. *
  337. IF( N.GT.K ) THEN
  338. *
  339. * C2 := C2 - W * V2**T
  340. *
  341. CALL DGEMM( 'No transpose', 'Transpose', M, N-K, K,
  342. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
  343. $ C( 1, K+1 ), LDC )
  344. END IF
  345. *
  346. * W := W * V1**T
  347. *
  348. CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  349. $ ONE, V, LDV, WORK, LDWORK )
  350. *
  351. * C1 := C1 - W
  352. *
  353. DO 60 J = 1, K
  354. DO 50 I = 1, M
  355. C( I, J ) = C( I, J ) - WORK( I, J )
  356. 50 CONTINUE
  357. 60 CONTINUE
  358. END IF
  359. *
  360. ELSE
  361. *
  362. * Let V = ( V1 )
  363. * ( V2 ) (last K rows)
  364. * where V2 is unit upper triangular.
  365. *
  366. IF( LSAME( SIDE, 'L' ) ) THEN
  367. *
  368. * Form H * C or H**T * C where C = ( C1 )
  369. * ( C2 )
  370. *
  371. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  372. *
  373. * W := C2**T
  374. *
  375. DO 70 J = 1, K
  376. CALL DCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  377. 70 CONTINUE
  378. *
  379. * W := W * V2
  380. *
  381. CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  382. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  383. IF( M.GT.K ) THEN
  384. *
  385. * W := W + C1**T * V1
  386. *
  387. CALL DGEMM( 'Transpose', 'No transpose', N, K, M-K,
  388. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  389. END IF
  390. *
  391. * W := W * T**T or W * T
  392. *
  393. CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  394. $ ONE, T, LDT, WORK, LDWORK )
  395. *
  396. * C := C - V * W**T
  397. *
  398. IF( M.GT.K ) THEN
  399. *
  400. * C1 := C1 - V1 * W**T
  401. *
  402. CALL DGEMM( 'No transpose', 'Transpose', M-K, N, K,
  403. $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
  404. END IF
  405. *
  406. * W := W * V2**T
  407. *
  408. CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  409. $ ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  410. *
  411. * C2 := C2 - W**T
  412. *
  413. DO 90 J = 1, K
  414. DO 80 I = 1, N
  415. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  416. 80 CONTINUE
  417. 90 CONTINUE
  418. *
  419. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  420. *
  421. * Form C * H or C * H**T where C = ( C1 C2 )
  422. *
  423. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  424. *
  425. * W := C2
  426. *
  427. DO 100 J = 1, K
  428. CALL DCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  429. 100 CONTINUE
  430. *
  431. * W := W * V2
  432. *
  433. CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  434. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  435. IF( N.GT.K ) THEN
  436. *
  437. * W := W + C1 * V1
  438. *
  439. CALL DGEMM( 'No transpose', 'No transpose', M, K, N-K,
  440. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  441. END IF
  442. *
  443. * W := W * T or W * T**T
  444. *
  445. CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  446. $ ONE, T, LDT, WORK, LDWORK )
  447. *
  448. * C := C - W * V**T
  449. *
  450. IF( N.GT.K ) THEN
  451. *
  452. * C1 := C1 - W * V1**T
  453. *
  454. CALL DGEMM( 'No transpose', 'Transpose', M, N-K, K,
  455. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  456. END IF
  457. *
  458. * W := W * V2**T
  459. *
  460. CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  461. $ ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  462. *
  463. * C2 := C2 - W
  464. *
  465. DO 120 J = 1, K
  466. DO 110 I = 1, M
  467. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  468. 110 CONTINUE
  469. 120 CONTINUE
  470. END IF
  471. END IF
  472. *
  473. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  474. *
  475. IF( LSAME( DIRECT, 'F' ) ) THEN
  476. *
  477. * Let V = ( V1 V2 ) (V1: first K columns)
  478. * where V1 is unit upper triangular.
  479. *
  480. IF( LSAME( SIDE, 'L' ) ) THEN
  481. *
  482. * Form H * C or H**T * C where C = ( C1 )
  483. * ( C2 )
  484. *
  485. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  486. *
  487. * W := C1**T
  488. *
  489. DO 130 J = 1, K
  490. CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  491. 130 CONTINUE
  492. *
  493. * W := W * V1**T
  494. *
  495. CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  496. $ ONE, V, LDV, WORK, LDWORK )
  497. IF( M.GT.K ) THEN
  498. *
  499. * W := W + C2**T * V2**T
  500. *
  501. CALL DGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  502. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  503. $ WORK, LDWORK )
  504. END IF
  505. *
  506. * W := W * T**T or W * T
  507. *
  508. CALL DTRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  509. $ ONE, T, LDT, WORK, LDWORK )
  510. *
  511. * C := C - V**T * W**T
  512. *
  513. IF( M.GT.K ) THEN
  514. *
  515. * C2 := C2 - V2**T * W**T
  516. *
  517. CALL DGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  518. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  519. $ C( K+1, 1 ), LDC )
  520. END IF
  521. *
  522. * W := W * V1
  523. *
  524. CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  525. $ K, ONE, V, LDV, WORK, LDWORK )
  526. *
  527. * C1 := C1 - W**T
  528. *
  529. DO 150 J = 1, K
  530. DO 140 I = 1, N
  531. C( J, I ) = C( J, I ) - WORK( I, J )
  532. 140 CONTINUE
  533. 150 CONTINUE
  534. *
  535. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  536. *
  537. * Form C * H or C * H**T where C = ( C1 C2 )
  538. *
  539. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  540. *
  541. * W := C1
  542. *
  543. DO 160 J = 1, K
  544. CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  545. 160 CONTINUE
  546. *
  547. * W := W * V1**T
  548. *
  549. CALL DTRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  550. $ ONE, V, LDV, WORK, LDWORK )
  551. IF( N.GT.K ) THEN
  552. *
  553. * W := W + C2 * V2**T
  554. *
  555. CALL DGEMM( 'No transpose', 'Transpose', M, K, N-K,
  556. $ ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
  557. $ ONE, WORK, LDWORK )
  558. END IF
  559. *
  560. * W := W * T or W * T**T
  561. *
  562. CALL DTRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  563. $ ONE, T, LDT, WORK, LDWORK )
  564. *
  565. * C := C - W * V
  566. *
  567. IF( N.GT.K ) THEN
  568. *
  569. * C2 := C2 - W * V2
  570. *
  571. CALL DGEMM( 'No transpose', 'No transpose', M, N-K, K,
  572. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  573. $ C( 1, K+1 ), LDC )
  574. END IF
  575. *
  576. * W := W * V1
  577. *
  578. CALL DTRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  579. $ K, ONE, V, LDV, WORK, LDWORK )
  580. *
  581. * C1 := C1 - W
  582. *
  583. DO 180 J = 1, K
  584. DO 170 I = 1, M
  585. C( I, J ) = C( I, J ) - WORK( I, J )
  586. 170 CONTINUE
  587. 180 CONTINUE
  588. *
  589. END IF
  590. *
  591. ELSE
  592. *
  593. * Let V = ( V1 V2 ) (V2: last K columns)
  594. * where V2 is unit lower triangular.
  595. *
  596. IF( LSAME( SIDE, 'L' ) ) THEN
  597. *
  598. * Form H * C or H**T * C where C = ( C1 )
  599. * ( C2 )
  600. *
  601. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  602. *
  603. * W := C2**T
  604. *
  605. DO 190 J = 1, K
  606. CALL DCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  607. 190 CONTINUE
  608. *
  609. * W := W * V2**T
  610. *
  611. CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  612. $ ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  613. IF( M.GT.K ) THEN
  614. *
  615. * W := W + C1**T * V1**T
  616. *
  617. CALL DGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  618. $ C, LDC, V, LDV, ONE, WORK, LDWORK )
  619. END IF
  620. *
  621. * W := W * T**T or W * T
  622. *
  623. CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  624. $ ONE, T, LDT, WORK, LDWORK )
  625. *
  626. * C := C - V**T * W**T
  627. *
  628. IF( M.GT.K ) THEN
  629. *
  630. * C1 := C1 - V1**T * W**T
  631. *
  632. CALL DGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  633. $ V, LDV, WORK, LDWORK, ONE, C, LDC )
  634. END IF
  635. *
  636. * W := W * V2
  637. *
  638. CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  639. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  640. *
  641. * C2 := C2 - W**T
  642. *
  643. DO 210 J = 1, K
  644. DO 200 I = 1, N
  645. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  646. 200 CONTINUE
  647. 210 CONTINUE
  648. *
  649. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  650. *
  651. * Form C * H or C * H' where C = ( C1 C2 )
  652. *
  653. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  654. *
  655. * W := C2
  656. *
  657. DO 220 J = 1, K
  658. CALL DCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  659. 220 CONTINUE
  660. *
  661. * W := W * V2**T
  662. *
  663. CALL DTRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  664. $ ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  665. IF( N.GT.K ) THEN
  666. *
  667. * W := W + C1 * V1**T
  668. *
  669. CALL DGEMM( 'No transpose', 'Transpose', M, K, N-K,
  670. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  671. END IF
  672. *
  673. * W := W * T or W * T**T
  674. *
  675. CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  676. $ ONE, T, LDT, WORK, LDWORK )
  677. *
  678. * C := C - W * V
  679. *
  680. IF( N.GT.K ) THEN
  681. *
  682. * C1 := C1 - W * V1
  683. *
  684. CALL DGEMM( 'No transpose', 'No transpose', M, N-K, K,
  685. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  686. END IF
  687. *
  688. * W := W * V2
  689. *
  690. CALL DTRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  691. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  692. *
  693. * C1 := C1 - W
  694. *
  695. DO 240 J = 1, K
  696. DO 230 I = 1, M
  697. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  698. 230 CONTINUE
  699. 240 CONTINUE
  700. *
  701. END IF
  702. *
  703. END IF
  704. END IF
  705. *
  706. RETURN
  707. *
  708. * End of DLARFB
  709. *
  710. END