You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chbevx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. *> \brief <b> CHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CHBEVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbevx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbevx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbevx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  22. * VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
  23. * IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  28. * REAL ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * REAL RWORK( * ), W( * )
  33. * COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
  34. * $ Z( LDZ, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CHBEVX computes selected eigenvalues and, optionally, eigenvectors
  44. *> of a complex Hermitian band matrix A. Eigenvalues and eigenvectors
  45. *> can be selected by specifying either a range of values or a range of
  46. *> indices for the desired eigenvalues.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] JOBZ
  53. *> \verbatim
  54. *> JOBZ is CHARACTER*1
  55. *> = 'N': Compute eigenvalues only;
  56. *> = 'V': Compute eigenvalues and eigenvectors.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] RANGE
  60. *> \verbatim
  61. *> RANGE is CHARACTER*1
  62. *> = 'A': all eigenvalues will be found;
  63. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  64. *> will be found;
  65. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] UPLO
  69. *> \verbatim
  70. *> UPLO is CHARACTER*1
  71. *> = 'U': Upper triangle of A is stored;
  72. *> = 'L': Lower triangle of A is stored.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> The order of the matrix A. N >= 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] KD
  82. *> \verbatim
  83. *> KD is INTEGER
  84. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  85. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  86. *> \endverbatim
  87. *>
  88. *> \param[in,out] AB
  89. *> \verbatim
  90. *> AB is COMPLEX array, dimension (LDAB, N)
  91. *> On entry, the upper or lower triangle of the Hermitian band
  92. *> matrix A, stored in the first KD+1 rows of the array. The
  93. *> j-th column of A is stored in the j-th column of the array AB
  94. *> as follows:
  95. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  96. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  97. *>
  98. *> On exit, AB is overwritten by values generated during the
  99. *> reduction to tridiagonal form.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDAB
  103. *> \verbatim
  104. *> LDAB is INTEGER
  105. *> The leading dimension of the array AB. LDAB >= KD + 1.
  106. *> \endverbatim
  107. *>
  108. *> \param[out] Q
  109. *> \verbatim
  110. *> Q is COMPLEX array, dimension (LDQ, N)
  111. *> If JOBZ = 'V', the N-by-N unitary matrix used in the
  112. *> reduction to tridiagonal form.
  113. *> If JOBZ = 'N', the array Q is not referenced.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] LDQ
  117. *> \verbatim
  118. *> LDQ is INTEGER
  119. *> The leading dimension of the array Q. If JOBZ = 'V', then
  120. *> LDQ >= max(1,N).
  121. *> \endverbatim
  122. *>
  123. *> \param[in] VL
  124. *> \verbatim
  125. *> VL is REAL
  126. *> If RANGE='V', the lower bound of the interval to
  127. *> be searched for eigenvalues. VL < VU.
  128. *> Not referenced if RANGE = 'A' or 'I'.
  129. *> \endverbatim
  130. *>
  131. *> \param[in] VU
  132. *> \verbatim
  133. *> VU is REAL
  134. *> If RANGE='V', the upper bound of the interval to
  135. *> be searched for eigenvalues. VL < VU.
  136. *> Not referenced if RANGE = 'A' or 'I'.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] IL
  140. *> \verbatim
  141. *> IL is INTEGER
  142. *> If RANGE='I', the index of the
  143. *> smallest eigenvalue to be returned.
  144. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  145. *> Not referenced if RANGE = 'A' or 'V'.
  146. *> \endverbatim
  147. *>
  148. *> \param[in] IU
  149. *> \verbatim
  150. *> IU is INTEGER
  151. *> If RANGE='I', the index of the
  152. *> largest eigenvalue to be returned.
  153. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  154. *> Not referenced if RANGE = 'A' or 'V'.
  155. *> \endverbatim
  156. *>
  157. *> \param[in] ABSTOL
  158. *> \verbatim
  159. *> ABSTOL is REAL
  160. *> The absolute error tolerance for the eigenvalues.
  161. *> An approximate eigenvalue is accepted as converged
  162. *> when it is determined to lie in an interval [a,b]
  163. *> of width less than or equal to
  164. *>
  165. *> ABSTOL + EPS * max( |a|,|b| ) ,
  166. *>
  167. *> where EPS is the machine precision. If ABSTOL is less than
  168. *> or equal to zero, then EPS*|T| will be used in its place,
  169. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  170. *> by reducing AB to tridiagonal form.
  171. *>
  172. *> Eigenvalues will be computed most accurately when ABSTOL is
  173. *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
  174. *> If this routine returns with INFO>0, indicating that some
  175. *> eigenvectors did not converge, try setting ABSTOL to
  176. *> 2*SLAMCH('S').
  177. *>
  178. *> See "Computing Small Singular Values of Bidiagonal Matrices
  179. *> with Guaranteed High Relative Accuracy," by Demmel and
  180. *> Kahan, LAPACK Working Note #3.
  181. *> \endverbatim
  182. *>
  183. *> \param[out] M
  184. *> \verbatim
  185. *> M is INTEGER
  186. *> The total number of eigenvalues found. 0 <= M <= N.
  187. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  188. *> \endverbatim
  189. *>
  190. *> \param[out] W
  191. *> \verbatim
  192. *> W is REAL array, dimension (N)
  193. *> The first M elements contain the selected eigenvalues in
  194. *> ascending order.
  195. *> \endverbatim
  196. *>
  197. *> \param[out] Z
  198. *> \verbatim
  199. *> Z is COMPLEX array, dimension (LDZ, max(1,M))
  200. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  201. *> contain the orthonormal eigenvectors of the matrix A
  202. *> corresponding to the selected eigenvalues, with the i-th
  203. *> column of Z holding the eigenvector associated with W(i).
  204. *> If an eigenvector fails to converge, then that column of Z
  205. *> contains the latest approximation to the eigenvector, and the
  206. *> index of the eigenvector is returned in IFAIL.
  207. *> If JOBZ = 'N', then Z is not referenced.
  208. *> Note: the user must ensure that at least max(1,M) columns are
  209. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  210. *> is not known in advance and an upper bound must be used.
  211. *> \endverbatim
  212. *>
  213. *> \param[in] LDZ
  214. *> \verbatim
  215. *> LDZ is INTEGER
  216. *> The leading dimension of the array Z. LDZ >= 1, and if
  217. *> JOBZ = 'V', LDZ >= max(1,N).
  218. *> \endverbatim
  219. *>
  220. *> \param[out] WORK
  221. *> \verbatim
  222. *> WORK is COMPLEX array, dimension (N)
  223. *> \endverbatim
  224. *>
  225. *> \param[out] RWORK
  226. *> \verbatim
  227. *> RWORK is REAL array, dimension (7*N)
  228. *> \endverbatim
  229. *>
  230. *> \param[out] IWORK
  231. *> \verbatim
  232. *> IWORK is INTEGER array, dimension (5*N)
  233. *> \endverbatim
  234. *>
  235. *> \param[out] IFAIL
  236. *> \verbatim
  237. *> IFAIL is INTEGER array, dimension (N)
  238. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  239. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  240. *> indices of the eigenvectors that failed to converge.
  241. *> If JOBZ = 'N', then IFAIL is not referenced.
  242. *> \endverbatim
  243. *>
  244. *> \param[out] INFO
  245. *> \verbatim
  246. *> INFO is INTEGER
  247. *> = 0: successful exit
  248. *> < 0: if INFO = -i, the i-th argument had an illegal value
  249. *> > 0: if INFO = i, then i eigenvectors failed to converge.
  250. *> Their indices are stored in array IFAIL.
  251. *> \endverbatim
  252. *
  253. * Authors:
  254. * ========
  255. *
  256. *> \author Univ. of Tennessee
  257. *> \author Univ. of California Berkeley
  258. *> \author Univ. of Colorado Denver
  259. *> \author NAG Ltd.
  260. *
  261. *> \date June 2016
  262. *
  263. *> \ingroup complexOTHEReigen
  264. *
  265. * =====================================================================
  266. SUBROUTINE CHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL,
  267. $ VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK,
  268. $ IWORK, IFAIL, INFO )
  269. *
  270. * -- LAPACK driver routine (version 3.7.0) --
  271. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  272. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  273. * June 2016
  274. *
  275. * .. Scalar Arguments ..
  276. CHARACTER JOBZ, RANGE, UPLO
  277. INTEGER IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N
  278. REAL ABSTOL, VL, VU
  279. * ..
  280. * .. Array Arguments ..
  281. INTEGER IFAIL( * ), IWORK( * )
  282. REAL RWORK( * ), W( * )
  283. COMPLEX AB( LDAB, * ), Q( LDQ, * ), WORK( * ),
  284. $ Z( LDZ, * )
  285. * ..
  286. *
  287. * =====================================================================
  288. *
  289. * .. Parameters ..
  290. REAL ZERO, ONE
  291. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  292. COMPLEX CZERO, CONE
  293. PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
  294. $ CONE = ( 1.0E0, 0.0E0 ) )
  295. * ..
  296. * .. Local Scalars ..
  297. LOGICAL ALLEIG, INDEIG, LOWER, TEST, VALEIG, WANTZ
  298. CHARACTER ORDER
  299. INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
  300. $ INDISP, INDIWK, INDRWK, INDWRK, ISCALE, ITMP1,
  301. $ J, JJ, NSPLIT
  302. REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
  303. $ SIGMA, SMLNUM, TMP1, VLL, VUU
  304. COMPLEX CTMP1
  305. * ..
  306. * .. External Functions ..
  307. LOGICAL LSAME
  308. REAL CLANHB, SLAMCH
  309. EXTERNAL LSAME, CLANHB, SLAMCH
  310. * ..
  311. * .. External Subroutines ..
  312. EXTERNAL CCOPY, CGEMV, CHBTRD, CLACPY, CLASCL, CSTEIN,
  313. $ CSTEQR, CSWAP, SCOPY, SSCAL, SSTEBZ, SSTERF,
  314. $ XERBLA
  315. * ..
  316. * .. Intrinsic Functions ..
  317. INTRINSIC MAX, MIN, REAL, SQRT
  318. * ..
  319. * .. Executable Statements ..
  320. *
  321. * Test the input parameters.
  322. *
  323. WANTZ = LSAME( JOBZ, 'V' )
  324. ALLEIG = LSAME( RANGE, 'A' )
  325. VALEIG = LSAME( RANGE, 'V' )
  326. INDEIG = LSAME( RANGE, 'I' )
  327. LOWER = LSAME( UPLO, 'L' )
  328. *
  329. INFO = 0
  330. IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  331. INFO = -1
  332. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  333. INFO = -2
  334. ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
  335. INFO = -3
  336. ELSE IF( N.LT.0 ) THEN
  337. INFO = -4
  338. ELSE IF( KD.LT.0 ) THEN
  339. INFO = -5
  340. ELSE IF( LDAB.LT.KD+1 ) THEN
  341. INFO = -7
  342. ELSE IF( WANTZ .AND. LDQ.LT.MAX( 1, N ) ) THEN
  343. INFO = -9
  344. ELSE
  345. IF( VALEIG ) THEN
  346. IF( N.GT.0 .AND. VU.LE.VL )
  347. $ INFO = -11
  348. ELSE IF( INDEIG ) THEN
  349. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  350. INFO = -12
  351. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  352. INFO = -13
  353. END IF
  354. END IF
  355. END IF
  356. IF( INFO.EQ.0 ) THEN
  357. IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
  358. $ INFO = -18
  359. END IF
  360. *
  361. IF( INFO.NE.0 ) THEN
  362. CALL XERBLA( 'CHBEVX', -INFO )
  363. RETURN
  364. END IF
  365. *
  366. * Quick return if possible
  367. *
  368. M = 0
  369. IF( N.EQ.0 )
  370. $ RETURN
  371. *
  372. IF( N.EQ.1 ) THEN
  373. M = 1
  374. IF( LOWER ) THEN
  375. CTMP1 = AB( 1, 1 )
  376. ELSE
  377. CTMP1 = AB( KD+1, 1 )
  378. END IF
  379. TMP1 = REAL( CTMP1 )
  380. IF( VALEIG ) THEN
  381. IF( .NOT.( VL.LT.TMP1 .AND. VU.GE.TMP1 ) )
  382. $ M = 0
  383. END IF
  384. IF( M.EQ.1 ) THEN
  385. W( 1 ) = CTMP1
  386. IF( WANTZ )
  387. $ Z( 1, 1 ) = CONE
  388. END IF
  389. RETURN
  390. END IF
  391. *
  392. * Get machine constants.
  393. *
  394. SAFMIN = SLAMCH( 'Safe minimum' )
  395. EPS = SLAMCH( 'Precision' )
  396. SMLNUM = SAFMIN / EPS
  397. BIGNUM = ONE / SMLNUM
  398. RMIN = SQRT( SMLNUM )
  399. RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
  400. *
  401. * Scale matrix to allowable range, if necessary.
  402. *
  403. ISCALE = 0
  404. ABSTLL = ABSTOL
  405. IF ( VALEIG ) THEN
  406. VLL = VL
  407. VUU = VU
  408. ELSE
  409. VLL = ZERO
  410. VUU = ZERO
  411. ENDIF
  412. ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
  413. IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
  414. ISCALE = 1
  415. SIGMA = RMIN / ANRM
  416. ELSE IF( ANRM.GT.RMAX ) THEN
  417. ISCALE = 1
  418. SIGMA = RMAX / ANRM
  419. END IF
  420. IF( ISCALE.EQ.1 ) THEN
  421. IF( LOWER ) THEN
  422. CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  423. ELSE
  424. CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
  425. END IF
  426. IF( ABSTOL.GT.0 )
  427. $ ABSTLL = ABSTOL*SIGMA
  428. IF( VALEIG ) THEN
  429. VLL = VL*SIGMA
  430. VUU = VU*SIGMA
  431. END IF
  432. END IF
  433. *
  434. * Call CHBTRD to reduce Hermitian band matrix to tridiagonal form.
  435. *
  436. INDD = 1
  437. INDE = INDD + N
  438. INDRWK = INDE + N
  439. INDWRK = 1
  440. CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, RWORK( INDD ),
  441. $ RWORK( INDE ), Q, LDQ, WORK( INDWRK ), IINFO )
  442. *
  443. * If all eigenvalues are desired and ABSTOL is less than or equal
  444. * to zero, then call SSTERF or CSTEQR. If this fails for some
  445. * eigenvalue, then try SSTEBZ.
  446. *
  447. TEST = .FALSE.
  448. IF (INDEIG) THEN
  449. IF (IL.EQ.1 .AND. IU.EQ.N) THEN
  450. TEST = .TRUE.
  451. END IF
  452. END IF
  453. IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
  454. CALL SCOPY( N, RWORK( INDD ), 1, W, 1 )
  455. INDEE = INDRWK + 2*N
  456. IF( .NOT.WANTZ ) THEN
  457. CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  458. CALL SSTERF( N, W, RWORK( INDEE ), INFO )
  459. ELSE
  460. CALL CLACPY( 'A', N, N, Q, LDQ, Z, LDZ )
  461. CALL SCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
  462. CALL CSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
  463. $ RWORK( INDRWK ), INFO )
  464. IF( INFO.EQ.0 ) THEN
  465. DO 10 I = 1, N
  466. IFAIL( I ) = 0
  467. 10 CONTINUE
  468. END IF
  469. END IF
  470. IF( INFO.EQ.0 ) THEN
  471. M = N
  472. GO TO 30
  473. END IF
  474. INFO = 0
  475. END IF
  476. *
  477. * Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
  478. *
  479. IF( WANTZ ) THEN
  480. ORDER = 'B'
  481. ELSE
  482. ORDER = 'E'
  483. END IF
  484. INDIBL = 1
  485. INDISP = INDIBL + N
  486. INDIWK = INDISP + N
  487. CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
  488. $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
  489. $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
  490. $ IWORK( INDIWK ), INFO )
  491. *
  492. IF( WANTZ ) THEN
  493. CALL CSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
  494. $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
  495. $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
  496. *
  497. * Apply unitary matrix used in reduction to tridiagonal
  498. * form to eigenvectors returned by CSTEIN.
  499. *
  500. DO 20 J = 1, M
  501. CALL CCOPY( N, Z( 1, J ), 1, WORK( 1 ), 1 )
  502. CALL CGEMV( 'N', N, N, CONE, Q, LDQ, WORK, 1, CZERO,
  503. $ Z( 1, J ), 1 )
  504. 20 CONTINUE
  505. END IF
  506. *
  507. * If matrix was scaled, then rescale eigenvalues appropriately.
  508. *
  509. 30 CONTINUE
  510. IF( ISCALE.EQ.1 ) THEN
  511. IF( INFO.EQ.0 ) THEN
  512. IMAX = M
  513. ELSE
  514. IMAX = INFO - 1
  515. END IF
  516. CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
  517. END IF
  518. *
  519. * If eigenvalues are not in order, then sort them, along with
  520. * eigenvectors.
  521. *
  522. IF( WANTZ ) THEN
  523. DO 50 J = 1, M - 1
  524. I = 0
  525. TMP1 = W( J )
  526. DO 40 JJ = J + 1, M
  527. IF( W( JJ ).LT.TMP1 ) THEN
  528. I = JJ
  529. TMP1 = W( JJ )
  530. END IF
  531. 40 CONTINUE
  532. *
  533. IF( I.NE.0 ) THEN
  534. ITMP1 = IWORK( INDIBL+I-1 )
  535. W( I ) = W( J )
  536. IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
  537. W( J ) = TMP1
  538. IWORK( INDIBL+J-1 ) = ITMP1
  539. CALL CSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
  540. IF( INFO.NE.0 ) THEN
  541. ITMP1 = IFAIL( I )
  542. IFAIL( I ) = IFAIL( J )
  543. IFAIL( J ) = ITMP1
  544. END IF
  545. END IF
  546. 50 CONTINUE
  547. END IF
  548. *
  549. RETURN
  550. *
  551. * End of CHBEVX
  552. *
  553. END