You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemm_small_kernel_tt_skylakex.c 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. /***************************************************************************
  2. Copyright (c) 2021, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include <immintrin.h>
  28. #include "common.h"
  29. #include <stdio.h>
  30. #define DECLARE_RESULT_512(M, N) __m512d result##M##N = _mm512_setzero_pd()
  31. #define BROADCAST_LOAD_A_512(M, N) __m512d Aval##M = _mm512_broadcastsd_pd(_mm_load_sd(&A[k + lda * (i+M)]))
  32. #define LOAD_B_512(M,N) __m512d Bval##N = _mm512_loadu_pd(&B[ldb * k + j + (N*8)])
  33. #define MASK_LOAD_B_512(M, N) __m512d Bval##N = _mm512_maskz_loadu_pd(mask, &B[ldb * k + j + (N*8)])
  34. #define MATMUL_512(M, N) result##M##N = _mm512_fmadd_pd(Aval##M, Bval##N, result##M##N)
  35. #if defined(B0)
  36. #define STORE_8xy(v, N, x, y) _mm512_storeu_pd(&C[(j + N*8 + x + y*8)*ldc + i], v)
  37. #define STORE_4xy(v, N, x, y) _mm256_storeu_pd(&C[(j + N*8 + x + y*4)*ldc + i], v)
  38. #define SCATTER_STORE_512(M, N) result##M##N = _mm512_mul_pd(result##M##N, alpha_512); \
  39. _mm512_i64scatter_pd(&C[(j + N*8)*ldc + i + M], vindex_n, result##M##N, 8);
  40. #define MASK_SCATTER_STORE_512(M, N) result##M##N = _mm512_mul_pd(result##M##N, alpha_512); \
  41. _mm512_mask_i64scatter_pd(&C[(j + N*8)*ldc + i + M], mask, vindex_n, result##M##N, 8);
  42. #else
  43. #define STORE_8xy(v, N, x, y) \
  44. asm("vfmadd231pd (%1), %2, %0": "+v"(v): "r"(&C[(j + N*8 + x + y*8)*ldc + i]), "v"(beta_512)); \
  45. _mm512_storeu_pd(&C[(j + N*8 + x + y*8)*ldc + i], v)
  46. #define STORE_4xy(v, N, x, y) \
  47. asm("vfmadd231pd (%1), %2, %0": "+v"(v): "r"(&C[(j + N*8 + x + y*4)*ldc + i]), "v"(beta_256)); \
  48. _mm256_storeu_pd(&C[(j + N*8 + x + y*4)*ldc + i], v)
  49. #define SCATTER_STORE_512(M, N) result##M##N = _mm512_mul_pd(result##M##N, alpha_512); \
  50. __m512d tmp##M##N = _mm512_i64gather_pd(vindex_n, &C[(j + N*8)*ldc + i + M], 8); \
  51. result##M##N = _mm512_fmadd_pd(tmp##M##N, beta_512, result##M##N); \
  52. _mm512_i64scatter_pd(&C[(j + N*8)*ldc + i + M], vindex_n, result##M##N, 8);
  53. #define MASK_SCATTER_STORE_512(M, N) result##M##N = _mm512_mul_pd(result##M##N, alpha_512); \
  54. __m512d tmp##M##N = _mm512_mask_i64gather_pd(_mm512_setzero_pd(), mask, vindex_n, &C[(j + N*8)*ldc + i + M], 8); \
  55. result##M##N = _mm512_fmadd_pd(tmp##M##N, beta_512, result##M##N); \
  56. _mm512_mask_i64scatter_pd(&C[(j + N*8)*ldc + i + M], mask, vindex_n, result##M##N, 8);
  57. #endif
  58. #define REORDER_8x8(r0, r1, r2, r3, r4, r5, r6, r7) \
  59. __m512d t0, t1, t2, t3, t4, t5, t6, t7; \
  60. t0 = _mm512_unpacklo_pd(r0, r1); \
  61. t1 = _mm512_unpackhi_pd(r0, r1); \
  62. t2 = _mm512_unpacklo_pd(r2, r3); \
  63. t3 = _mm512_unpackhi_pd(r2, r3); \
  64. t4 = _mm512_unpacklo_pd(r4, r5); \
  65. t5 = _mm512_unpackhi_pd(r4, r5); \
  66. t6 = _mm512_unpacklo_pd(r6, r7); \
  67. t7 = _mm512_unpackhi_pd(r6, r7); \
  68. r0 = _mm512_shuffle_f64x2(t0, t2, 0x88); \
  69. r1 = _mm512_shuffle_f64x2(t1, t3, 0x88); \
  70. r2 = _mm512_shuffle_f64x2(t0, t2, 0xdd); \
  71. r3 = _mm512_shuffle_f64x2(t1, t3, 0xdd); \
  72. r4 = _mm512_shuffle_f64x2(t4, t6, 0x88); \
  73. r5 = _mm512_shuffle_f64x2(t5, t7, 0x88); \
  74. r6 = _mm512_shuffle_f64x2(t4, t6, 0xdd); \
  75. r7 = _mm512_shuffle_f64x2(t5, t7, 0xdd); \
  76. t0 = _mm512_permutex2var_pd(r0, idx_lo, r4); \
  77. t1 = _mm512_permutex2var_pd(r1, idx_lo, r5); \
  78. t2 = _mm512_permutex2var_pd(r2, idx_lo, r6); \
  79. t3 = _mm512_permutex2var_pd(r3, idx_lo, r7); \
  80. t4 = _mm512_permutex2var_pd(r0, idx_hi, r4); \
  81. t5 = _mm512_permutex2var_pd(r1, idx_hi, r5); \
  82. t6 = _mm512_permutex2var_pd(r2, idx_hi, r6); \
  83. t7 = _mm512_permutex2var_pd(r3, idx_hi, r7); \
  84. t0 = _mm512_mul_pd(t0, alpha_512); \
  85. t1 = _mm512_mul_pd(t1, alpha_512); \
  86. t2 = _mm512_mul_pd(t2, alpha_512); \
  87. t3 = _mm512_mul_pd(t3, alpha_512); \
  88. t4 = _mm512_mul_pd(t4, alpha_512); \
  89. t5 = _mm512_mul_pd(t5, alpha_512); \
  90. t6 = _mm512_mul_pd(t6, alpha_512); \
  91. t7 = _mm512_mul_pd(t7, alpha_512);
  92. #define SAVE_8(N, x) {\
  93. STORE_8xy(t##x, N, x, 0); \
  94. }
  95. #define REORDER_STORE_8x8(N) {\
  96. REORDER_8x8(result0##N, result1##N, result2##N, result3##N, result4##N, result5##N, result6##N, result7##N); \
  97. SAVE_8(N, 0); SAVE_8(N, 1); SAVE_8(N, 2); SAVE_8(N, 3); SAVE_8(N, 4); SAVE_8(N, 5); SAVE_8(N, 6); SAVE_8(N, 7); \
  98. }
  99. #define MASK_SAVE_8() \
  100. switch (nn) { \
  101. case 8: SAVE_8(0, 7); \
  102. case 7: SAVE_8(0, 6); \
  103. case 6: SAVE_8(0, 5); \
  104. case 5: SAVE_8(0, 4); \
  105. case 4: SAVE_8(0, 3); \
  106. case 3: SAVE_8(0, 2); \
  107. case 2: SAVE_8(0, 1); \
  108. case 1: SAVE_8(0, 0); \
  109. }
  110. #define MASK_REORDER_STORE_8x8(N) {\
  111. REORDER_8x8(result0##N, result1##N, result2##N, result3##N, result4##N, result5##N, result6##N, result7##N); \
  112. MASK_SAVE_8(); \
  113. }
  114. #define REORDER_4x8(r0, r1, r2, r3) \
  115. __m512d t0, t1, t2, t3; \
  116. t0 = _mm512_unpacklo_pd(r0, r1); \
  117. t1 = _mm512_unpackhi_pd(r0, r1); \
  118. t2 = _mm512_unpacklo_pd(r2, r3); \
  119. t3 = _mm512_unpackhi_pd(r2, r3); \
  120. r0 = _mm512_permutex2var_pd(t0, idx_lo, t2); \
  121. r1 = _mm512_permutex2var_pd(t1, idx_lo, t3); \
  122. r2 = _mm512_permutex2var_pd(t0, idx_hi, t2); \
  123. r3 = _mm512_permutex2var_pd(t1, idx_hi, t3); \
  124. t0 = _mm512_mul_pd(r0, alpha_512); \
  125. t1 = _mm512_mul_pd(r1, alpha_512); \
  126. t2 = _mm512_mul_pd(r2, alpha_512); \
  127. t3 = _mm512_mul_pd(r3, alpha_512);
  128. #define SAVE_4(N, x, y) {\
  129. __m256d v4 = _mm512_extractf64x4_pd(t##x, y); \
  130. STORE_4xy(v4, N, x, y); \
  131. }
  132. #define REORDER_STORE_4x8(N) {\
  133. REORDER_4x8(result0##N, result1##N, result2##N, result3##N); \
  134. SAVE_4(N, 0, 0); SAVE_4(N, 1, 0); SAVE_4(N, 2, 0); SAVE_4(N, 3, 0); \
  135. SAVE_4(N, 0, 1); SAVE_4(N, 1, 1); SAVE_4(N, 2, 1); SAVE_4(N, 3, 1); \
  136. }
  137. #define MASK_SAVE_4() \
  138. switch (nn) { \
  139. case 8: SAVE_4(0, 3, 1); \
  140. case 7: SAVE_4(0, 2, 1); \
  141. case 6: SAVE_4(0, 1, 1); \
  142. case 5: SAVE_4(0, 0, 1); \
  143. case 4: SAVE_4(0, 3, 0); \
  144. case 3: SAVE_4(0, 2, 0); \
  145. case 2: SAVE_4(0, 1, 0); \
  146. case 1: SAVE_4(0, 0, 0); \
  147. }
  148. #define MASK_REORDER_STORE_4x8(N) {\
  149. REORDER_4x8(result0##N, result1##N, result2##N, result3##N); \
  150. MASK_SAVE_4(); \
  151. }
  152. #if defined(B0)
  153. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT * C, BLASLONG ldc)
  154. #else
  155. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT beta, FLOAT * C, BLASLONG ldc)
  156. #endif
  157. {
  158. // column major
  159. BLASLONG i, j, k;
  160. BLASLONG m8 = M & ~7;
  161. BLASLONG m4 = M & ~3;
  162. BLASLONG m2 = M & ~1;
  163. BLASLONG n32 = N & ~31;
  164. BLASLONG n16 = N & ~15;
  165. __m512d alpha_512 = _mm512_broadcastsd_pd(_mm_load_sd(&alpha));
  166. #if !defined(B0)
  167. __m512d beta_512 = _mm512_broadcastsd_pd(_mm_load_sd(&beta));
  168. __m256d beta_256 = _mm256_broadcastsd_pd(_mm_load_sd(&beta));
  169. #endif
  170. long long permute_table[] = {
  171. 0, 1, 4, 5, 0|8, 1|8, 4|8, 5|8,
  172. 2, 3, 6, 7, 2|8, 3|8, 6|8, 7|8,
  173. };
  174. __m512i idx_lo = _mm512_loadu_si512(permute_table);
  175. __m512i idx_hi = _mm512_loadu_si512(permute_table + 8);
  176. for (i = 0; i < m8; i += 8) {
  177. for (j = 0; j < n16; j += 16) {
  178. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  179. DECLARE_RESULT_512(4, 0); DECLARE_RESULT_512(5, 0); DECLARE_RESULT_512(6, 0); DECLARE_RESULT_512(7, 0);
  180. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  181. DECLARE_RESULT_512(4, 1); DECLARE_RESULT_512(5, 1); DECLARE_RESULT_512(6, 1); DECLARE_RESULT_512(7, 1);
  182. for (k = 0; k < K; k++) {
  183. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x); BROADCAST_LOAD_A_512(2, x); BROADCAST_LOAD_A_512(3, x);
  184. BROADCAST_LOAD_A_512(4, x); BROADCAST_LOAD_A_512(5, x); BROADCAST_LOAD_A_512(6, x); BROADCAST_LOAD_A_512(7, x);
  185. LOAD_B_512(x, 0); LOAD_B_512(x, 1);
  186. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  187. MATMUL_512(4, 0); MATMUL_512(5, 0); MATMUL_512(6, 0); MATMUL_512(7, 0);
  188. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  189. MATMUL_512(4, 1); MATMUL_512(5, 1); MATMUL_512(6, 1); MATMUL_512(7, 1);
  190. }
  191. REORDER_STORE_8x8(0);
  192. REORDER_STORE_8x8(1);
  193. }
  194. __mmask8 mask = 0xff;
  195. int nn = 8;
  196. for (; j < N; j += 8) {
  197. if (N - j < 8) {
  198. nn = N - j;
  199. mask = (1UL << nn) - 1;
  200. }
  201. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  202. DECLARE_RESULT_512(4, 0); DECLARE_RESULT_512(5, 0); DECLARE_RESULT_512(6, 0); DECLARE_RESULT_512(7, 0);
  203. for (k = 0; k < K; k++) {
  204. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x); BROADCAST_LOAD_A_512(2, x); BROADCAST_LOAD_A_512(3, x);
  205. BROADCAST_LOAD_A_512(4, x); BROADCAST_LOAD_A_512(5, x); BROADCAST_LOAD_A_512(6, x); BROADCAST_LOAD_A_512(7, x);
  206. MASK_LOAD_B_512(x, 0);
  207. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  208. MATMUL_512(4, 0); MATMUL_512(5, 0); MATMUL_512(6, 0); MATMUL_512(7, 0);
  209. }
  210. MASK_REORDER_STORE_8x8(0);
  211. }
  212. }
  213. for (; i < m4; i += 4) {
  214. long long permute_table2[] = {
  215. 0, 1, 0|8, 1|8, 4, 5, 4|8, 5|8,
  216. 2, 3, 2|8, 3|8, 6, 7, 6|8, 7|8,
  217. };
  218. idx_lo = _mm512_loadu_si512(permute_table2);
  219. idx_hi = _mm512_loadu_si512(permute_table2 + 8);
  220. for (j = 0; j < n32; j += 32) {
  221. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  222. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  223. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
  224. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
  225. for (k = 0; k < K; k++) {
  226. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x); BROADCAST_LOAD_A_512(2, x); BROADCAST_LOAD_A_512(3, x);
  227. LOAD_B_512(x, 0); LOAD_B_512(x, 1); LOAD_B_512(x, 2); LOAD_B_512(x, 3);
  228. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  229. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  230. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  231. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  232. }
  233. REORDER_STORE_4x8(0);
  234. REORDER_STORE_4x8(1);
  235. REORDER_STORE_4x8(2);
  236. REORDER_STORE_4x8(3);
  237. }
  238. for (; j < n16; j += 16) {
  239. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  240. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  241. for (k = 0; k < K; k++) {
  242. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x); BROADCAST_LOAD_A_512(2, x); BROADCAST_LOAD_A_512(3, x);
  243. LOAD_B_512(x, 0); LOAD_B_512(x, 1);
  244. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  245. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  246. }
  247. REORDER_STORE_4x8(0);
  248. REORDER_STORE_4x8(1);
  249. }
  250. __mmask8 mask = 0xff;
  251. int nn = 8;
  252. for (; j < N; j += 8) {
  253. if (N - j < 8) {
  254. nn = N - j;
  255. mask = (1UL << nn) - 1;
  256. }
  257. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  258. for (k = 0; k < K; k++) {
  259. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x); BROADCAST_LOAD_A_512(2, x); BROADCAST_LOAD_A_512(3, x);
  260. MASK_LOAD_B_512(x, 0);
  261. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  262. }
  263. MASK_REORDER_STORE_4x8(0);
  264. }
  265. }
  266. if (i < M) {
  267. long long index_n[8];
  268. for (int ii = 0; ii < 8; ii++) {
  269. index_n[ii] = ii * ldc;
  270. }
  271. __m512i vindex_n = _mm512_loadu_si512(index_n);
  272. #if !defined(B0)
  273. __m512d beta_512 = _mm512_broadcastsd_pd(_mm_load_sd(&beta));
  274. #endif
  275. for (; i < m2; i += 2) {
  276. for (j = 0; j < n32; j += 32) {
  277. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  278. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  279. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
  280. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
  281. for (k = 0; k < K; k++) {
  282. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x);
  283. LOAD_B_512(x, 0); LOAD_B_512(x, 1); LOAD_B_512(x, 2); LOAD_B_512(x, 3);
  284. MATMUL_512(0, 0); MATMUL_512(1, 0);
  285. MATMUL_512(0, 1); MATMUL_512(1, 1);
  286. MATMUL_512(0, 2); MATMUL_512(1, 2);
  287. MATMUL_512(0, 3); MATMUL_512(1, 3);
  288. }
  289. SCATTER_STORE_512(0, 0); SCATTER_STORE_512(1, 0);
  290. SCATTER_STORE_512(0, 1); SCATTER_STORE_512(1, 1);
  291. SCATTER_STORE_512(0, 2); SCATTER_STORE_512(1, 2);
  292. SCATTER_STORE_512(0, 3); SCATTER_STORE_512(1, 3);
  293. }
  294. for (; j < n16; j += 16) {
  295. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  296. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  297. for (k = 0; k < K; k++) {
  298. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x);
  299. LOAD_B_512(x, 0); LOAD_B_512(x, 1);
  300. MATMUL_512(0, 0); MATMUL_512(1, 0);
  301. MATMUL_512(0, 1); MATMUL_512(1, 1);
  302. }
  303. SCATTER_STORE_512(0, 0); SCATTER_STORE_512(1, 0);
  304. SCATTER_STORE_512(0, 1); SCATTER_STORE_512(1, 1);
  305. }
  306. __mmask8 mask = 0xff;
  307. int nn = 8;
  308. for (; j < N; j += 8) {
  309. if (N - j < 8) {
  310. nn = N - j;
  311. mask = (1UL << nn) - 1;
  312. }
  313. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  314. for (k = 0; k < K; k++) {
  315. BROADCAST_LOAD_A_512(0, x); BROADCAST_LOAD_A_512(1, x);
  316. MASK_LOAD_B_512(x, 0);
  317. MATMUL_512(0, 0); MATMUL_512(1, 0);
  318. }
  319. MASK_SCATTER_STORE_512(0, 0); MASK_SCATTER_STORE_512(1, 0);
  320. }
  321. }
  322. for (; i < M; i += 1) {
  323. for (j = 0; j < n32; j += 32) {
  324. DECLARE_RESULT_512(0, 0);
  325. DECLARE_RESULT_512(0, 1);
  326. DECLARE_RESULT_512(0, 2);
  327. DECLARE_RESULT_512(0, 3);
  328. for (k = 0; k < K; k++) {
  329. BROADCAST_LOAD_A_512(0, x);
  330. LOAD_B_512(x, 0); LOAD_B_512(x, 1); LOAD_B_512(x, 2); LOAD_B_512(x, 3);
  331. MATMUL_512(0, 0);
  332. MATMUL_512(0, 1);
  333. MATMUL_512(0, 2);
  334. MATMUL_512(0, 3);
  335. }
  336. SCATTER_STORE_512(0, 0);
  337. SCATTER_STORE_512(0, 1);
  338. SCATTER_STORE_512(0, 2);
  339. SCATTER_STORE_512(0, 3);
  340. }
  341. for (; j < n16; j += 16) {
  342. DECLARE_RESULT_512(0, 0);
  343. DECLARE_RESULT_512(0, 1);
  344. for (k = 0; k < K; k++) {
  345. BROADCAST_LOAD_A_512(0, x);
  346. LOAD_B_512(x, 0); LOAD_B_512(x, 1);
  347. MATMUL_512(0, 0);
  348. MATMUL_512(0, 1);
  349. }
  350. SCATTER_STORE_512(0, 0);
  351. SCATTER_STORE_512(0, 1);
  352. }
  353. __mmask8 mask = 0xff;
  354. int nn = 8;
  355. for (; j < N; j += 8) {
  356. if (N - j < 8) {
  357. nn = N - j;
  358. mask = (1UL << nn) - 1;
  359. }
  360. DECLARE_RESULT_512(0, 0);
  361. for (k = 0; k < K; k++) {
  362. BROADCAST_LOAD_A_512(0, x);
  363. MASK_LOAD_B_512(x, 0);
  364. MATMUL_512(0, 0);
  365. }
  366. MASK_SCATTER_STORE_512(0, 0);
  367. }
  368. }
  369. }
  370. return 0;
  371. }