You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgemm_small_kernel_tn_skylakex.c 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. /***************************************************************************
  2. Copyright (c) 2021, The OpenBLAS Project
  3. All rights reserved.
  4. Redistribution and use in source and binary forms, with or without
  5. modification, are permitted provided that the following conditions are
  6. met:
  7. 1. Redistributions of source code must retain the above copyright
  8. notice, this list of conditions and the following disclaimer.
  9. 2. Redistributions in binary form must reproduce the above copyright
  10. notice, this list of conditions and the following disclaimer in
  11. the documentation and/or other materials provided with the
  12. distribution.
  13. 3. Neither the name of the OpenBLAS project nor the names of
  14. its contributors may be used to endorse or promote products
  15. derived from this software without specific prior written permission.
  16. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17. AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18. IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19. ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
  20. LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  21. DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  22. SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  23. CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  24. OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  25. USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26. *****************************************************************************/
  27. #include <immintrin.h>
  28. #include "common.h"
  29. #include <stdio.h>
  30. #include <memory.h>
  31. #define DECLARE_RESULT_512(M, N) __m512d result##M##N = _mm512_setzero_pd()
  32. #define MATMUL_512(M, N) result##M##N = _mm512_fmadd_pd(Aval##M, Bval##N, result##M##N)
  33. #define LOAD_KA_512(M, N) __m512d Aval##M = _mm512_loadu_pd(&A[(i + M)*lda + k]);
  34. #define LOAD_KB_512(M, N) __m512d Bval##N = _mm512_loadu_pd(&B[(j + N)*ldb + k])
  35. #define MASK_LOAD_KA_512(M, N) __m512d Aval##M = _mm512_maskz_loadu_pd(mask, &A[(i + M)*lda + k])
  36. #define MASK_LOAD_KB_512(M, N) __m512d Bval##N = _mm512_maskz_loadu_pd(mask, &B[(j + N)*ldb + k])
  37. #define REDUCE_4(rr0, rr1, rr2, rr3) \
  38. __m512d r0, r1, r2, r3, t0, t1, t2, t3;\
  39. r0 = _mm512_unpacklo_pd(rr0, rr1); r1 = _mm512_unpackhi_pd(rr0, rr1); \
  40. r2 = _mm512_unpacklo_pd(rr2, rr3); r3 = _mm512_unpackhi_pd(rr2, rr3); \
  41. t0 = _mm512_permutex2var_pd(r0, idx_lo, r2); t1 = _mm512_permutex2var_pd(r1, idx_lo, r3); \
  42. t2 = _mm512_permutex2var_pd(r0, idx_hi, r2); t3 = _mm512_permutex2var_pd(r1, idx_hi, r3); \
  43. r0 = _mm512_add_pd(t0, t1); r1 = _mm512_add_pd(t2, t3); t0 = _mm512_add_pd(r0, r1); \
  44. __m256d s0, s1; \
  45. s0 = _mm512_extractf64x4_pd(t0, 0); s1 = _mm512_extractf64x4_pd(t0, 1); \
  46. s0 = _mm256_add_pd(s0, s1); s0 = _mm256_mul_pd(alpha_256, s0);
  47. #define REDUCE_M4(N) REDUCE_4(result0##N, result1##N, result2##N, result3##N)
  48. #define REDUCE_N4(M) REDUCE_4(result##M##0, result##M##1, result##M##2, result##M##3)
  49. #if defined(B0)
  50. #define STORE_REDUCE(M, N) C[(j+N)*ldc + i + M] = alpha * _mm512_reduce_add_pd(result##M##N)
  51. #define STORE_M4(N, s0) _mm256_storeu_pd(&C[(j + N)*ldc + i], s0);
  52. #define STORE_N4(M, s0) _mm256_i64scatter_pd(&C[j*ldc + i + M], vindex_n, s0, 8);
  53. #else
  54. #define STORE_REDUCE(M, N) C[(j+N)*ldc + i + M] = alpha * _mm512_reduce_add_pd(result##M##N) + beta * C[(j+N)*ldc + i + M]
  55. #define STORE_M4(N, s0) \
  56. asm("vfmadd231pd (%1), %2, %0": "+v"(s0):"r"(&C[(j + N)*ldc + i]), "v"(beta_256)); \
  57. _mm256_storeu_pd(&C[(j + N)*ldc + i], s0);
  58. #define STORE_N4(M, s0) \
  59. s0 = _mm256_fmadd_pd(_mm256_i64gather_pd(&C[j*ldc + i + M], vindex_n, 8), beta_256, s0); \
  60. _mm256_i64scatter_pd(&C[j*ldc + i + M], vindex_n, s0, 8);
  61. #endif
  62. #define STORE_REDUCE_M4(N) {\
  63. REDUCE_M4(N) \
  64. STORE_M4(N, s0) \
  65. }
  66. #define STORE_REDUCE_N4(M) {\
  67. REDUCE_N4(M) \
  68. STORE_N4(M, s0) \
  69. }
  70. #if defined(B0)
  71. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT * C, BLASLONG ldc)
  72. #else
  73. int CNAME(BLASLONG M, BLASLONG N, BLASLONG K, FLOAT * A, BLASLONG lda, FLOAT alpha, FLOAT * B, BLASLONG ldb, FLOAT beta, FLOAT * C, BLASLONG ldc)
  74. #endif
  75. {
  76. // column major
  77. BLASLONG i, j, k;
  78. BLASLONG m4 = M & ~3;
  79. BLASLONG m2 = M & ~1;
  80. BLASLONG n4 = N & ~3;
  81. BLASLONG n2 = N & ~1;
  82. BLASLONG k8 = K & ~7;
  83. __mmask8 mask;
  84. __m256i vindex_n = _mm256_set_epi64x(ldc*3, ldc*2, ldc, 0);
  85. __m256d alpha_256 = _mm256_broadcast_sd(&alpha);
  86. #if !defined(B0)
  87. __m256d beta_256 = _mm256_broadcast_sd(&beta);
  88. #endif
  89. long long permute_table[] = {
  90. 0, 1, 0|8, 1|8, 4, 5, 4|8, 5|8,
  91. 2, 3, 2|8, 3|8, 6, 7, 6|8, 7|8,
  92. };
  93. __m512i idx_lo = _mm512_loadu_si512(permute_table);
  94. __m512i idx_hi = _mm512_loadu_si512(permute_table + 8);
  95. for (i = 0; i < m4; i += 4) {
  96. for (j = 0; j < n4; j += 4) {
  97. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  98. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  99. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2); DECLARE_RESULT_512(2, 2); DECLARE_RESULT_512(3, 2);
  100. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3); DECLARE_RESULT_512(2, 3); DECLARE_RESULT_512(3, 3);
  101. for (k = 0; k < k8; k += 8) {
  102. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  103. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  104. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  105. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  106. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  107. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  108. }
  109. int remains = K - k;
  110. if (remains) {
  111. mask = (1UL << remains) - 1;
  112. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  113. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  114. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  115. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  116. MATMUL_512(0, 2); MATMUL_512(1, 2); MATMUL_512(2, 2); MATMUL_512(3, 2);
  117. MATMUL_512(0, 3); MATMUL_512(1, 3); MATMUL_512(2, 3); MATMUL_512(3, 3);
  118. }
  119. STORE_REDUCE_M4(0); STORE_REDUCE_M4(1); STORE_REDUCE_M4(2); STORE_REDUCE_M4(3);
  120. }
  121. for (; j < n2; j += 2) {
  122. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  123. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1); DECLARE_RESULT_512(2, 1); DECLARE_RESULT_512(3, 1);
  124. for (k = 0; k < k8; k += 8) {
  125. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  126. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  127. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  128. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  129. }
  130. int remains = K - k;
  131. if (remains) {
  132. mask = (1UL << remains) - 1;
  133. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  134. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  135. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  136. MATMUL_512(0, 1); MATMUL_512(1, 1); MATMUL_512(2, 1); MATMUL_512(3, 1);
  137. }
  138. STORE_REDUCE_M4(0); STORE_REDUCE_M4(1);
  139. }
  140. for (; j < N; j += 1) {
  141. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0); DECLARE_RESULT_512(2, 0); DECLARE_RESULT_512(3, 0);
  142. for (k = 0; k < k8; k += 8) {
  143. LOAD_KA_512(0, x); LOAD_KA_512(1, x); LOAD_KA_512(2, x); LOAD_KA_512(3, x);
  144. LOAD_KB_512(x, 0);
  145. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  146. }
  147. int remains = K - k;
  148. if (remains) {
  149. mask = (1UL << remains) - 1;
  150. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x); MASK_LOAD_KA_512(2, x); MASK_LOAD_KA_512(3, x);
  151. MASK_LOAD_KB_512(x, 0);
  152. MATMUL_512(0, 0); MATMUL_512(1, 0); MATMUL_512(2, 0); MATMUL_512(3, 0);
  153. }
  154. STORE_REDUCE_M4(0);
  155. }
  156. }
  157. for (; i < m2; i += 2) {
  158. for (j = 0; j < n4; j += 4) {
  159. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  160. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  161. DECLARE_RESULT_512(0, 2); DECLARE_RESULT_512(1, 2);
  162. DECLARE_RESULT_512(0, 3); DECLARE_RESULT_512(1, 3);
  163. for (k = 0; k < k8; k += 8) {
  164. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  165. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  166. MATMUL_512(0, 0); MATMUL_512(1, 0);
  167. MATMUL_512(0, 1); MATMUL_512(1, 1);
  168. MATMUL_512(0, 2); MATMUL_512(1, 2);
  169. MATMUL_512(0, 3); MATMUL_512(1, 3);
  170. }
  171. int remains = K - k;
  172. if (remains) {
  173. mask = (1UL << remains) - 1;
  174. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  175. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  176. MATMUL_512(0, 0); MATMUL_512(1, 0);
  177. MATMUL_512(0, 1); MATMUL_512(1, 1);
  178. MATMUL_512(0, 2); MATMUL_512(1, 2);
  179. MATMUL_512(0, 3); MATMUL_512(1, 3);
  180. }
  181. STORE_REDUCE_N4(0); STORE_REDUCE_N4(1);
  182. }
  183. for (; j < n2; j += 2) {
  184. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  185. DECLARE_RESULT_512(0, 1); DECLARE_RESULT_512(1, 1);
  186. for (k = 0; k < k8; k += 8) {
  187. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  188. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  189. MATMUL_512(0, 0); MATMUL_512(1, 0);
  190. MATMUL_512(0, 1); MATMUL_512(1, 1);
  191. }
  192. int remains = K - k;
  193. if (remains) {
  194. mask = (1UL << remains) - 1;
  195. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  196. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  197. MATMUL_512(0, 0); MATMUL_512(1, 0);
  198. MATMUL_512(0, 1); MATMUL_512(1, 1);
  199. }
  200. STORE_REDUCE(0, 0); STORE_REDUCE(1, 0);
  201. STORE_REDUCE(0, 1); STORE_REDUCE(1, 1);
  202. }
  203. for (; j < N; j += 1) {
  204. DECLARE_RESULT_512(0, 0); DECLARE_RESULT_512(1, 0);
  205. for (k = 0; k < k8; k += 8) {
  206. LOAD_KA_512(0, x); LOAD_KA_512(1, x);
  207. LOAD_KB_512(x, 0);
  208. MATMUL_512(0, 0); MATMUL_512(1, 0);
  209. }
  210. int remains = K - k;
  211. if (remains) {
  212. mask = (1UL << remains) - 1;
  213. MASK_LOAD_KA_512(0, x); MASK_LOAD_KA_512(1, x);
  214. MASK_LOAD_KB_512(x, 0);
  215. MATMUL_512(0, 0); MATMUL_512(1, 0);
  216. }
  217. STORE_REDUCE(0, 0); STORE_REDUCE(1, 0);
  218. }
  219. }
  220. for (; i < M; i += 1) {
  221. for (j = 0; j < n4; j += 4) {
  222. DECLARE_RESULT_512(0, 0);
  223. DECLARE_RESULT_512(0, 1);
  224. DECLARE_RESULT_512(0, 2);
  225. DECLARE_RESULT_512(0, 3);
  226. for (k = 0; k < k8; k += 8) {
  227. LOAD_KA_512(0, x);
  228. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1); LOAD_KB_512(x, 2); LOAD_KB_512(x, 3);
  229. MATMUL_512(0, 0);
  230. MATMUL_512(0, 1);
  231. MATMUL_512(0, 2);
  232. MATMUL_512(0, 3);
  233. }
  234. int remains = K - k;
  235. if (remains) {
  236. mask = (1UL << remains) - 1;
  237. MASK_LOAD_KA_512(0, x);
  238. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1); MASK_LOAD_KB_512(x, 2); MASK_LOAD_KB_512(x, 3);
  239. MATMUL_512(0, 0);
  240. MATMUL_512(0, 1);
  241. MATMUL_512(0, 2);
  242. MATMUL_512(0, 3);
  243. }
  244. STORE_REDUCE_N4(0);
  245. }
  246. for (; j < n2; j += 2) {
  247. DECLARE_RESULT_512(0, 0);
  248. DECLARE_RESULT_512(0, 1);
  249. for (k = 0; k < k8; k += 8) {
  250. LOAD_KA_512(0, x);
  251. LOAD_KB_512(x, 0); LOAD_KB_512(x, 1);
  252. MATMUL_512(0, 0);
  253. MATMUL_512(0, 1);
  254. }
  255. int remains = K - k;
  256. if (remains) {
  257. mask = (1UL << remains) - 1;
  258. MASK_LOAD_KA_512(0, x);
  259. MASK_LOAD_KB_512(x, 0); MASK_LOAD_KB_512(x, 1);
  260. MATMUL_512(0, 0);
  261. MATMUL_512(0, 1);
  262. }
  263. STORE_REDUCE(0, 0);
  264. STORE_REDUCE(0, 1);
  265. }
  266. for (; j < N; j += 1) {
  267. DECLARE_RESULT_512(0, 0);
  268. for (k = 0; k < k8; k += 8) {
  269. LOAD_KA_512(0, x);
  270. LOAD_KB_512(x, 0);
  271. MATMUL_512(0, 0);
  272. }
  273. int remains = K - k;
  274. if (remains) {
  275. mask = (1UL << remains) - 1;
  276. MASK_LOAD_KA_512(0, x);
  277. MASK_LOAD_KB_512(x, 0);
  278. MATMUL_512(0, 0);
  279. }
  280. STORE_REDUCE(0, 0);
  281. }
  282. }
  283. return 0;
  284. }