You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dgbsvx.f 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. *> \brief <b> DGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGBSVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgbsvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgbsvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgbsvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  22. * LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  23. * RCOND, FERR, BERR, WORK, IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER EQUED, FACT, TRANS
  27. * INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  28. * DOUBLE PRECISION RCOND
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IPIV( * ), IWORK( * )
  32. * DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  33. * $ BERR( * ), C( * ), FERR( * ), R( * ),
  34. * $ WORK( * ), X( LDX, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> DGBSVX uses the LU factorization to compute the solution to a real
  44. *> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
  45. *> where A is a band matrix of order N with KL subdiagonals and KU
  46. *> superdiagonals, and X and B are N-by-NRHS matrices.
  47. *>
  48. *> Error bounds on the solution and a condition estimate are also
  49. *> provided.
  50. *> \endverbatim
  51. *
  52. *> \par Description:
  53. * =================
  54. *>
  55. *> \verbatim
  56. *>
  57. *> The following steps are performed by this subroutine:
  58. *>
  59. *> 1. If FACT = 'E', real scaling factors are computed to equilibrate
  60. *> the system:
  61. *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B
  62. *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
  63. *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
  64. *> Whether or not the system will be equilibrated depends on the
  65. *> scaling of the matrix A, but if equilibration is used, A is
  66. *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
  67. *> or diag(C)*B (if TRANS = 'T' or 'C').
  68. *>
  69. *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
  70. *> matrix A (after equilibration if FACT = 'E') as
  71. *> A = L * U,
  72. *> where L is a product of permutation and unit lower triangular
  73. *> matrices with KL subdiagonals, and U is upper triangular with
  74. *> KL+KU superdiagonals.
  75. *>
  76. *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
  77. *> returns with INFO = i. Otherwise, the factored form of A is used
  78. *> to estimate the condition number of the matrix A. If the
  79. *> reciprocal of the condition number is less than machine precision,
  80. *> INFO = N+1 is returned as a warning, but the routine still goes on
  81. *> to solve for X and compute error bounds as described below.
  82. *>
  83. *> 4. The system of equations is solved for X using the factored form
  84. *> of A.
  85. *>
  86. *> 5. Iterative refinement is applied to improve the computed solution
  87. *> matrix and calculate error bounds and backward error estimates
  88. *> for it.
  89. *>
  90. *> 6. If equilibration was used, the matrix X is premultiplied by
  91. *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
  92. *> that it solves the original system before equilibration.
  93. *> \endverbatim
  94. *
  95. * Arguments:
  96. * ==========
  97. *
  98. *> \param[in] FACT
  99. *> \verbatim
  100. *> FACT is CHARACTER*1
  101. *> Specifies whether or not the factored form of the matrix A is
  102. *> supplied on entry, and if not, whether the matrix A should be
  103. *> equilibrated before it is factored.
  104. *> = 'F': On entry, AFB and IPIV contain the factored form of
  105. *> A. If EQUED is not 'N', the matrix A has been
  106. *> equilibrated with scaling factors given by R and C.
  107. *> AB, AFB, and IPIV are not modified.
  108. *> = 'N': The matrix A will be copied to AFB and factored.
  109. *> = 'E': The matrix A will be equilibrated if necessary, then
  110. *> copied to AFB and factored.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] TRANS
  114. *> \verbatim
  115. *> TRANS is CHARACTER*1
  116. *> Specifies the form of the system of equations.
  117. *> = 'N': A * X = B (No transpose)
  118. *> = 'T': A**T * X = B (Transpose)
  119. *> = 'C': A**H * X = B (Transpose)
  120. *> \endverbatim
  121. *>
  122. *> \param[in] N
  123. *> \verbatim
  124. *> N is INTEGER
  125. *> The number of linear equations, i.e., the order of the
  126. *> matrix A. N >= 0.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] KL
  130. *> \verbatim
  131. *> KL is INTEGER
  132. *> The number of subdiagonals within the band of A. KL >= 0.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] KU
  136. *> \verbatim
  137. *> KU is INTEGER
  138. *> The number of superdiagonals within the band of A. KU >= 0.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] NRHS
  142. *> \verbatim
  143. *> NRHS is INTEGER
  144. *> The number of right hand sides, i.e., the number of columns
  145. *> of the matrices B and X. NRHS >= 0.
  146. *> \endverbatim
  147. *>
  148. *> \param[in,out] AB
  149. *> \verbatim
  150. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  151. *> On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
  152. *> The j-th column of A is stored in the j-th column of the
  153. *> array AB as follows:
  154. *> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
  155. *>
  156. *> If FACT = 'F' and EQUED is not 'N', then A must have been
  157. *> equilibrated by the scaling factors in R and/or C. AB is not
  158. *> modified if FACT = 'F' or 'N', or if FACT = 'E' and
  159. *> EQUED = 'N' on exit.
  160. *>
  161. *> On exit, if EQUED .ne. 'N', A is scaled as follows:
  162. *> EQUED = 'R': A := diag(R) * A
  163. *> EQUED = 'C': A := A * diag(C)
  164. *> EQUED = 'B': A := diag(R) * A * diag(C).
  165. *> \endverbatim
  166. *>
  167. *> \param[in] LDAB
  168. *> \verbatim
  169. *> LDAB is INTEGER
  170. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  171. *> \endverbatim
  172. *>
  173. *> \param[in,out] AFB
  174. *> \verbatim
  175. *> AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
  176. *> If FACT = 'F', then AFB is an input argument and on entry
  177. *> contains details of the LU factorization of the band matrix
  178. *> A, as computed by DGBTRF. U is stored as an upper triangular
  179. *> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
  180. *> and the multipliers used during the factorization are stored
  181. *> in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is
  182. *> the factored form of the equilibrated matrix A.
  183. *>
  184. *> If FACT = 'N', then AFB is an output argument and on exit
  185. *> returns details of the LU factorization of A.
  186. *>
  187. *> If FACT = 'E', then AFB is an output argument and on exit
  188. *> returns details of the LU factorization of the equilibrated
  189. *> matrix A (see the description of AB for the form of the
  190. *> equilibrated matrix).
  191. *> \endverbatim
  192. *>
  193. *> \param[in] LDAFB
  194. *> \verbatim
  195. *> LDAFB is INTEGER
  196. *> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1.
  197. *> \endverbatim
  198. *>
  199. *> \param[in,out] IPIV
  200. *> \verbatim
  201. *> IPIV is INTEGER array, dimension (N)
  202. *> If FACT = 'F', then IPIV is an input argument and on entry
  203. *> contains the pivot indices from the factorization A = L*U
  204. *> as computed by DGBTRF; row i of the matrix was interchanged
  205. *> with row IPIV(i).
  206. *>
  207. *> If FACT = 'N', then IPIV is an output argument and on exit
  208. *> contains the pivot indices from the factorization A = L*U
  209. *> of the original matrix A.
  210. *>
  211. *> If FACT = 'E', then IPIV is an output argument and on exit
  212. *> contains the pivot indices from the factorization A = L*U
  213. *> of the equilibrated matrix A.
  214. *> \endverbatim
  215. *>
  216. *> \param[in,out] EQUED
  217. *> \verbatim
  218. *> EQUED is CHARACTER*1
  219. *> Specifies the form of equilibration that was done.
  220. *> = 'N': No equilibration (always true if FACT = 'N').
  221. *> = 'R': Row equilibration, i.e., A has been premultiplied by
  222. *> diag(R).
  223. *> = 'C': Column equilibration, i.e., A has been postmultiplied
  224. *> by diag(C).
  225. *> = 'B': Both row and column equilibration, i.e., A has been
  226. *> replaced by diag(R) * A * diag(C).
  227. *> EQUED is an input argument if FACT = 'F'; otherwise, it is an
  228. *> output argument.
  229. *> \endverbatim
  230. *>
  231. *> \param[in,out] R
  232. *> \verbatim
  233. *> R is DOUBLE PRECISION array, dimension (N)
  234. *> The row scale factors for A. If EQUED = 'R' or 'B', A is
  235. *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
  236. *> is not accessed. R is an input argument if FACT = 'F';
  237. *> otherwise, R is an output argument. If FACT = 'F' and
  238. *> EQUED = 'R' or 'B', each element of R must be positive.
  239. *> \endverbatim
  240. *>
  241. *> \param[in,out] C
  242. *> \verbatim
  243. *> C is DOUBLE PRECISION array, dimension (N)
  244. *> The column scale factors for A. If EQUED = 'C' or 'B', A is
  245. *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
  246. *> is not accessed. C is an input argument if FACT = 'F';
  247. *> otherwise, C is an output argument. If FACT = 'F' and
  248. *> EQUED = 'C' or 'B', each element of C must be positive.
  249. *> \endverbatim
  250. *>
  251. *> \param[in,out] B
  252. *> \verbatim
  253. *> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
  254. *> On entry, the right hand side matrix B.
  255. *> On exit,
  256. *> if EQUED = 'N', B is not modified;
  257. *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
  258. *> diag(R)*B;
  259. *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
  260. *> overwritten by diag(C)*B.
  261. *> \endverbatim
  262. *>
  263. *> \param[in] LDB
  264. *> \verbatim
  265. *> LDB is INTEGER
  266. *> The leading dimension of the array B. LDB >= max(1,N).
  267. *> \endverbatim
  268. *>
  269. *> \param[out] X
  270. *> \verbatim
  271. *> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
  272. *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
  273. *> to the original system of equations. Note that A and B are
  274. *> modified on exit if EQUED .ne. 'N', and the solution to the
  275. *> equilibrated system is inv(diag(C))*X if TRANS = 'N' and
  276. *> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
  277. *> and EQUED = 'R' or 'B'.
  278. *> \endverbatim
  279. *>
  280. *> \param[in] LDX
  281. *> \verbatim
  282. *> LDX is INTEGER
  283. *> The leading dimension of the array X. LDX >= max(1,N).
  284. *> \endverbatim
  285. *>
  286. *> \param[out] RCOND
  287. *> \verbatim
  288. *> RCOND is DOUBLE PRECISION
  289. *> The estimate of the reciprocal condition number of the matrix
  290. *> A after equilibration (if done). If RCOND is less than the
  291. *> machine precision (in particular, if RCOND = 0), the matrix
  292. *> is singular to working precision. This condition is
  293. *> indicated by a return code of INFO > 0.
  294. *> \endverbatim
  295. *>
  296. *> \param[out] FERR
  297. *> \verbatim
  298. *> FERR is DOUBLE PRECISION array, dimension (NRHS)
  299. *> The estimated forward error bound for each solution vector
  300. *> X(j) (the j-th column of the solution matrix X).
  301. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  302. *> is an estimated upper bound for the magnitude of the largest
  303. *> element in (X(j) - XTRUE) divided by the magnitude of the
  304. *> largest element in X(j). The estimate is as reliable as
  305. *> the estimate for RCOND, and is almost always a slight
  306. *> overestimate of the true error.
  307. *> \endverbatim
  308. *>
  309. *> \param[out] BERR
  310. *> \verbatim
  311. *> BERR is DOUBLE PRECISION array, dimension (NRHS)
  312. *> The componentwise relative backward error of each solution
  313. *> vector X(j) (i.e., the smallest relative change in
  314. *> any element of A or B that makes X(j) an exact solution).
  315. *> \endverbatim
  316. *>
  317. *> \param[out] WORK
  318. *> \verbatim
  319. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,3*N))
  320. *> On exit, WORK(1) contains the reciprocal pivot growth
  321. *> factor norm(A)/norm(U). The "max absolute element" norm is
  322. *> used. If WORK(1) is much less than 1, then the stability
  323. *> of the LU factorization of the (equilibrated) matrix A
  324. *> could be poor. This also means that the solution X, condition
  325. *> estimator RCOND, and forward error bound FERR could be
  326. *> unreliable. If factorization fails with 0<INFO<=N, then
  327. *> WORK(1) contains the reciprocal pivot growth factor for the
  328. *> leading INFO columns of A.
  329. *> \endverbatim
  330. *>
  331. *> \param[out] IWORK
  332. *> \verbatim
  333. *> IWORK is INTEGER array, dimension (N)
  334. *> \endverbatim
  335. *>
  336. *> \param[out] INFO
  337. *> \verbatim
  338. *> INFO is INTEGER
  339. *> = 0: successful exit
  340. *> < 0: if INFO = -i, the i-th argument had an illegal value
  341. *> > 0: if INFO = i, and i is
  342. *> <= N: U(i,i) is exactly zero. The factorization
  343. *> has been completed, but the factor U is exactly
  344. *> singular, so the solution and error bounds
  345. *> could not be computed. RCOND = 0 is returned.
  346. *> = N+1: U is nonsingular, but RCOND is less than machine
  347. *> precision, meaning that the matrix is singular
  348. *> to working precision. Nevertheless, the
  349. *> solution and error bounds are computed because
  350. *> there are a number of situations where the
  351. *> computed solution can be more accurate than the
  352. *> value of RCOND would suggest.
  353. *> \endverbatim
  354. *
  355. * Authors:
  356. * ========
  357. *
  358. *> \author Univ. of Tennessee
  359. *> \author Univ. of California Berkeley
  360. *> \author Univ. of Colorado Denver
  361. *> \author NAG Ltd.
  362. *
  363. *> \ingroup doubleGBsolve
  364. *
  365. * =====================================================================
  366. SUBROUTINE DGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
  367. $ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
  368. $ RCOND, FERR, BERR, WORK, IWORK, INFO )
  369. *
  370. * -- LAPACK driver routine --
  371. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  372. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  373. *
  374. * .. Scalar Arguments ..
  375. CHARACTER EQUED, FACT, TRANS
  376. INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  377. DOUBLE PRECISION RCOND
  378. * ..
  379. * .. Array Arguments ..
  380. INTEGER IPIV( * ), IWORK( * )
  381. DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  382. $ BERR( * ), C( * ), FERR( * ), R( * ),
  383. $ WORK( * ), X( LDX, * )
  384. * ..
  385. *
  386. * =====================================================================
  387. *
  388. * .. Parameters ..
  389. DOUBLE PRECISION ZERO, ONE
  390. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  391. * ..
  392. * .. Local Scalars ..
  393. LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
  394. CHARACTER NORM
  395. INTEGER I, INFEQU, J, J1, J2
  396. DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
  397. $ ROWCND, RPVGRW, SMLNUM
  398. * ..
  399. * .. External Functions ..
  400. LOGICAL LSAME
  401. DOUBLE PRECISION DLAMCH, DLANGB, DLANTB
  402. EXTERNAL LSAME, DLAMCH, DLANGB, DLANTB
  403. * ..
  404. * .. External Subroutines ..
  405. EXTERNAL DCOPY, DGBCON, DGBEQU, DGBRFS, DGBTRF, DGBTRS,
  406. $ DLACPY, DLAQGB, XERBLA
  407. * ..
  408. * .. Intrinsic Functions ..
  409. INTRINSIC ABS, MAX, MIN
  410. * ..
  411. * .. Executable Statements ..
  412. *
  413. INFO = 0
  414. NOFACT = LSAME( FACT, 'N' )
  415. EQUIL = LSAME( FACT, 'E' )
  416. NOTRAN = LSAME( TRANS, 'N' )
  417. IF( NOFACT .OR. EQUIL ) THEN
  418. EQUED = 'N'
  419. ROWEQU = .FALSE.
  420. COLEQU = .FALSE.
  421. ELSE
  422. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  423. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  424. SMLNUM = DLAMCH( 'Safe minimum' )
  425. BIGNUM = ONE / SMLNUM
  426. END IF
  427. *
  428. * Test the input parameters.
  429. *
  430. IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
  431. $ THEN
  432. INFO = -1
  433. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  434. $ LSAME( TRANS, 'C' ) ) THEN
  435. INFO = -2
  436. ELSE IF( N.LT.0 ) THEN
  437. INFO = -3
  438. ELSE IF( KL.LT.0 ) THEN
  439. INFO = -4
  440. ELSE IF( KU.LT.0 ) THEN
  441. INFO = -5
  442. ELSE IF( NRHS.LT.0 ) THEN
  443. INFO = -6
  444. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  445. INFO = -8
  446. ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  447. INFO = -10
  448. ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
  449. $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
  450. INFO = -12
  451. ELSE
  452. IF( ROWEQU ) THEN
  453. RCMIN = BIGNUM
  454. RCMAX = ZERO
  455. DO 10 J = 1, N
  456. RCMIN = MIN( RCMIN, R( J ) )
  457. RCMAX = MAX( RCMAX, R( J ) )
  458. 10 CONTINUE
  459. IF( RCMIN.LE.ZERO ) THEN
  460. INFO = -13
  461. ELSE IF( N.GT.0 ) THEN
  462. ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  463. ELSE
  464. ROWCND = ONE
  465. END IF
  466. END IF
  467. IF( COLEQU .AND. INFO.EQ.0 ) THEN
  468. RCMIN = BIGNUM
  469. RCMAX = ZERO
  470. DO 20 J = 1, N
  471. RCMIN = MIN( RCMIN, C( J ) )
  472. RCMAX = MAX( RCMAX, C( J ) )
  473. 20 CONTINUE
  474. IF( RCMIN.LE.ZERO ) THEN
  475. INFO = -14
  476. ELSE IF( N.GT.0 ) THEN
  477. COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
  478. ELSE
  479. COLCND = ONE
  480. END IF
  481. END IF
  482. IF( INFO.EQ.0 ) THEN
  483. IF( LDB.LT.MAX( 1, N ) ) THEN
  484. INFO = -16
  485. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  486. INFO = -18
  487. END IF
  488. END IF
  489. END IF
  490. *
  491. IF( INFO.NE.0 ) THEN
  492. CALL XERBLA( 'DGBSVX', -INFO )
  493. RETURN
  494. END IF
  495. *
  496. IF( EQUIL ) THEN
  497. *
  498. * Compute row and column scalings to equilibrate the matrix A.
  499. *
  500. CALL DGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  501. $ AMAX, INFEQU )
  502. IF( INFEQU.EQ.0 ) THEN
  503. *
  504. * Equilibrate the matrix.
  505. *
  506. CALL DLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
  507. $ AMAX, EQUED )
  508. ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
  509. COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
  510. END IF
  511. END IF
  512. *
  513. * Scale the right hand side.
  514. *
  515. IF( NOTRAN ) THEN
  516. IF( ROWEQU ) THEN
  517. DO 40 J = 1, NRHS
  518. DO 30 I = 1, N
  519. B( I, J ) = R( I )*B( I, J )
  520. 30 CONTINUE
  521. 40 CONTINUE
  522. END IF
  523. ELSE IF( COLEQU ) THEN
  524. DO 60 J = 1, NRHS
  525. DO 50 I = 1, N
  526. B( I, J ) = C( I )*B( I, J )
  527. 50 CONTINUE
  528. 60 CONTINUE
  529. END IF
  530. *
  531. IF( NOFACT .OR. EQUIL ) THEN
  532. *
  533. * Compute the LU factorization of the band matrix A.
  534. *
  535. DO 70 J = 1, N
  536. J1 = MAX( J-KU, 1 )
  537. J2 = MIN( J+KL, N )
  538. CALL DCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
  539. $ AFB( KL+KU+1-J+J1, J ), 1 )
  540. 70 CONTINUE
  541. *
  542. CALL DGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
  543. *
  544. * Return if INFO is non-zero.
  545. *
  546. IF( INFO.GT.0 ) THEN
  547. *
  548. * Compute the reciprocal pivot growth factor of the
  549. * leading rank-deficient INFO columns of A.
  550. *
  551. ANORM = ZERO
  552. DO 90 J = 1, INFO
  553. DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
  554. ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
  555. 80 CONTINUE
  556. 90 CONTINUE
  557. RPVGRW = DLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
  558. $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
  559. $ WORK )
  560. IF( RPVGRW.EQ.ZERO ) THEN
  561. RPVGRW = ONE
  562. ELSE
  563. RPVGRW = ANORM / RPVGRW
  564. END IF
  565. WORK( 1 ) = RPVGRW
  566. RCOND = ZERO
  567. RETURN
  568. END IF
  569. END IF
  570. *
  571. * Compute the norm of the matrix A and the
  572. * reciprocal pivot growth factor RPVGRW.
  573. *
  574. IF( NOTRAN ) THEN
  575. NORM = '1'
  576. ELSE
  577. NORM = 'I'
  578. END IF
  579. ANORM = DLANGB( NORM, N, KL, KU, AB, LDAB, WORK )
  580. RPVGRW = DLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, WORK )
  581. IF( RPVGRW.EQ.ZERO ) THEN
  582. RPVGRW = ONE
  583. ELSE
  584. RPVGRW = DLANGB( 'M', N, KL, KU, AB, LDAB, WORK ) / RPVGRW
  585. END IF
  586. *
  587. * Compute the reciprocal of the condition number of A.
  588. *
  589. CALL DGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
  590. $ WORK, IWORK, INFO )
  591. *
  592. * Compute the solution matrix X.
  593. *
  594. CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
  595. CALL DGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
  596. $ INFO )
  597. *
  598. * Use iterative refinement to improve the computed solution and
  599. * compute error bounds and backward error estimates for it.
  600. *
  601. CALL DGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
  602. $ B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
  603. *
  604. * Transform the solution matrix X to a solution of the original
  605. * system.
  606. *
  607. IF( NOTRAN ) THEN
  608. IF( COLEQU ) THEN
  609. DO 110 J = 1, NRHS
  610. DO 100 I = 1, N
  611. X( I, J ) = C( I )*X( I, J )
  612. 100 CONTINUE
  613. 110 CONTINUE
  614. DO 120 J = 1, NRHS
  615. FERR( J ) = FERR( J ) / COLCND
  616. 120 CONTINUE
  617. END IF
  618. ELSE IF( ROWEQU ) THEN
  619. DO 140 J = 1, NRHS
  620. DO 130 I = 1, N
  621. X( I, J ) = R( I )*X( I, J )
  622. 130 CONTINUE
  623. 140 CONTINUE
  624. DO 150 J = 1, NRHS
  625. FERR( J ) = FERR( J ) / ROWCND
  626. 150 CONTINUE
  627. END IF
  628. *
  629. * Set INFO = N+1 if the matrix is singular to working precision.
  630. *
  631. IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
  632. $ INFO = N + 1
  633. *
  634. WORK( 1 ) = RPVGRW
  635. RETURN
  636. *
  637. * End of DGBSVX
  638. *
  639. END