You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

potrf_parallel.c 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. #ifndef USE_SIMPLE_THREADED_LEVEL3
  41. //The array of job_t may overflow the stack.
  42. //Instead, use malloc to alloc job_t.
  43. #if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD
  44. #define USE_ALLOC_HEAP
  45. #endif
  46. static FLOAT dm1 = -1.;
  47. #ifndef KERNEL_FUNC
  48. #ifndef LOWER
  49. #define KERNEL_FUNC SYRK_KERNEL_U
  50. #else
  51. #define KERNEL_FUNC SYRK_KERNEL_L
  52. #endif
  53. #endif
  54. #ifndef LOWER
  55. #ifndef COMPLEX
  56. #define TRSM_KERNEL TRSM_KERNEL_LT
  57. #else
  58. #define TRSM_KERNEL TRSM_KERNEL_LC
  59. #endif
  60. #else
  61. #ifndef COMPLEX
  62. #define TRSM_KERNEL TRSM_KERNEL_RN
  63. #else
  64. #define TRSM_KERNEL TRSM_KERNEL_RR
  65. #endif
  66. #endif
  67. #ifndef CACHE_LINE_SIZE
  68. #define CACHE_LINE_SIZE 8
  69. #endif
  70. #ifndef DIVIDE_RATE
  71. #define DIVIDE_RATE 2
  72. #endif
  73. #ifndef SWITCH_RATIO
  74. #define SWITCH_RATIO 2
  75. #endif
  76. #ifndef LOWER
  77. #define TRANS
  78. #endif
  79. #ifndef SYRK_LOCAL
  80. #if !defined(LOWER) && !defined(TRANS)
  81. #define SYRK_LOCAL SYRK_UN
  82. #elif !defined(LOWER) && defined(TRANS)
  83. #define SYRK_LOCAL SYRK_UT
  84. #elif defined(LOWER) && !defined(TRANS)
  85. #define SYRK_LOCAL SYRK_LN
  86. #else
  87. #define SYRK_LOCAL SYRK_LT
  88. #endif
  89. #endif
  90. typedef struct {
  91. #ifdef HAVE_C11
  92. _Atomic
  93. #else
  94. volatile
  95. #endif
  96. BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  97. } job_t;
  98. #ifndef KERNEL_OPERATION
  99. #ifndef COMPLEX
  100. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  101. KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  102. #else
  103. #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \
  104. KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y))
  105. #endif
  106. #endif
  107. #ifndef ICOPY_OPERATION
  108. #ifndef TRANS
  109. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  110. #else
  111. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  112. #endif
  113. #endif
  114. #ifndef OCOPY_OPERATION
  115. #ifdef TRANS
  116. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  117. #else
  118. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  119. #endif
  120. #endif
  121. #ifndef S
  122. #define S args -> a
  123. #endif
  124. #ifndef A
  125. #define A args -> b
  126. #endif
  127. #ifndef C
  128. #define C args -> c
  129. #endif
  130. #ifndef LDA
  131. #define LDA args -> lda
  132. #endif
  133. #ifndef N
  134. #define N args -> m
  135. #endif
  136. #ifndef K
  137. #define K args -> k
  138. #endif
  139. static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  140. FLOAT *buffer[DIVIDE_RATE];
  141. BLASLONG k, lda;
  142. BLASLONG m_from, m_to;
  143. FLOAT *alpha;
  144. FLOAT *a, *c;
  145. job_t *job = (job_t *)args -> common;
  146. BLASLONG xxx, bufferside;
  147. BLASLONG jjs, min_jj;
  148. BLASLONG is, min_i, div_n;
  149. BLASLONG i, current;
  150. k = K;
  151. a = (FLOAT *)A;
  152. c = (FLOAT *)C;
  153. lda = LDA;
  154. alpha = (FLOAT *)args -> alpha;
  155. m_from = range_n[mypos + 0];
  156. m_to = range_n[mypos + 1];
  157. #if 0
  158. fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to);
  159. #endif
  160. div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  161. buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  162. for (i = 1; i < DIVIDE_RATE; i++) {
  163. buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE;
  164. }
  165. #ifndef LOWER
  166. TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  167. #else
  168. TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb);
  169. #endif
  170. for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) {
  171. for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){
  172. min_jj = MIN(m_to, xxx + div_n) - jjs;
  173. #ifndef LOWER
  174. if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN;
  175. #else
  176. if (min_jj > GEMM_P) min_jj = GEMM_P;
  177. #endif
  178. #ifndef LOWER
  179. OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  180. TRSM_KERNEL (k, min_jj, k, dm1,
  181. #ifdef COMPLEX
  182. ZERO,
  183. #endif
  184. sb,
  185. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  186. a + jjs * lda * COMPSIZE, lda, 0);
  187. #else
  188. ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE);
  189. TRSM_KERNEL (min_jj, k, k, dm1,
  190. #ifdef COMPLEX
  191. ZERO,
  192. #endif
  193. buffer[bufferside] + k * (jjs - xxx) * COMPSIZE,
  194. sb,
  195. a + jjs * COMPSIZE, lda, 0);
  196. #endif
  197. }
  198. #ifndef LOWER
  199. for (i = 0; i <= mypos; i++)
  200. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  201. #else
  202. for (i = mypos; i < args -> nthreads; i++)
  203. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  204. #endif
  205. WMB;
  206. }
  207. min_i = m_to - m_from;
  208. if (min_i >= GEMM_P * 2) {
  209. min_i = GEMM_P;
  210. } else
  211. if (min_i > GEMM_P) {
  212. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  213. }
  214. #ifndef LOWER
  215. ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  216. #else
  217. OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa);
  218. #endif
  219. current = mypos;
  220. #ifndef LOWER
  221. while (current < args -> nthreads)
  222. #else
  223. while (current >= 0)
  224. #endif
  225. {
  226. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  227. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  228. /* thread has to wait */
  229. if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;};
  230. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  231. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  232. c, lda, m_from, xxx);
  233. if (m_from + min_i >= m_to) {
  234. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  235. WMB;
  236. }
  237. }
  238. #ifndef LOWER
  239. current ++;
  240. #else
  241. current --;
  242. #endif
  243. }
  244. for(is = m_from + min_i; is < m_to; is += min_i){
  245. min_i = m_to - is;
  246. if (min_i >= GEMM_P * 2) {
  247. min_i = GEMM_P;
  248. } else
  249. if (min_i > GEMM_P) {
  250. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  251. }
  252. #ifndef LOWER
  253. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  254. #else
  255. OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  256. #endif
  257. current = mypos;
  258. #ifndef LOWER
  259. while (current < args -> nthreads)
  260. #else
  261. while (current >= 0)
  262. #endif
  263. {
  264. div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN;
  265. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  266. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha,
  267. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  268. c, lda, is, xxx);
  269. if (is + min_i >= m_to) {
  270. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0;
  271. WMB;
  272. }
  273. }
  274. #ifndef LOWER
  275. current ++;
  276. #else
  277. current --;
  278. #endif
  279. }
  280. }
  281. for (i = 0; i < args -> nthreads; i++) {
  282. if (i != mypos) {
  283. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  284. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;};
  285. }
  286. }
  287. }
  288. return 0;
  289. }
  290. static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){
  291. blas_arg_t newarg;
  292. #ifndef USE_ALLOC_HEAP
  293. job_t job[MAX_CPU_NUMBER];
  294. #else
  295. job_t * job = NULL;
  296. #endif
  297. blas_queue_t queue[MAX_CPU_NUMBER];
  298. BLASLONG range[MAX_CPU_NUMBER + 100];
  299. BLASLONG num_cpu;
  300. BLASLONG nthreads = args -> nthreads;
  301. BLASLONG width, i, j, k;
  302. BLASLONG n, n_from, n_to;
  303. int mode, mask;
  304. double dnum;
  305. #ifndef COMPLEX
  306. #ifdef XDOUBLE
  307. mode = BLAS_XDOUBLE | BLAS_REAL;
  308. mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1;
  309. #elif defined(DOUBLE)
  310. mode = BLAS_DOUBLE | BLAS_REAL;
  311. mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1;
  312. #elif defined(HALF)
  313. mode = BLAS_HALF | BLAS_REAL;
  314. mask = MAX(SHGEMM_UNROLL_M, SHGEMM_UNROLL_N) - 1;
  315. #else
  316. mode = BLAS_SINGLE | BLAS_REAL;
  317. mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1;
  318. #endif
  319. #else
  320. #ifdef XDOUBLE
  321. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  322. mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1;
  323. #elif defined(DOUBLE)
  324. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  325. mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1;
  326. #else
  327. mode = BLAS_SINGLE | BLAS_COMPLEX;
  328. mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1;
  329. #endif
  330. #endif
  331. newarg.m = args -> m;
  332. newarg.k = args -> k;
  333. newarg.a = args -> a;
  334. newarg.b = args -> b;
  335. newarg.c = args -> c;
  336. newarg.lda = args -> lda;
  337. newarg.alpha = args -> alpha;
  338. #ifdef USE_ALLOC_HEAP
  339. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  340. if(job==NULL){
  341. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  342. exit(1);
  343. }
  344. #endif
  345. newarg.common = (void *)job;
  346. n_from = 0;
  347. n_to = args -> m;
  348. #ifndef LOWER
  349. range[MAX_CPU_NUMBER] = n_to - n_from;
  350. range[0] = 0;
  351. num_cpu = 0;
  352. i = 0;
  353. n = n_to - n_from;
  354. dnum = (double)n * (double)n /(double)nthreads;
  355. while (i < n){
  356. if (nthreads - num_cpu > 1) {
  357. double di = (double)i;
  358. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  359. if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1));
  360. if ((width > n - i) || (width < mask)) width = n - i;
  361. } else {
  362. width = n - i;
  363. }
  364. range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width;
  365. queue[num_cpu].mode = mode;
  366. queue[num_cpu].routine = inner_thread;
  367. queue[num_cpu].args = &newarg;
  368. queue[num_cpu].range_m = NULL;
  369. queue[num_cpu].sa = NULL;
  370. queue[num_cpu].sb = NULL;
  371. queue[num_cpu].next = &queue[num_cpu + 1];
  372. num_cpu ++;
  373. i += width;
  374. }
  375. for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu];
  376. #else
  377. range[0] = 0;
  378. num_cpu = 0;
  379. i = 0;
  380. n = n_to - n_from;
  381. dnum = (double)n * (double)n /(double)nthreads;
  382. while (i < n){
  383. if (nthreads - num_cpu > 1) {
  384. double di = (double)i;
  385. width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1));
  386. if ((width > n - i) || (width < mask)) width = n - i;
  387. } else {
  388. width = n - i;
  389. }
  390. range[num_cpu + 1] = range[num_cpu] + width;
  391. queue[num_cpu].mode = mode;
  392. queue[num_cpu].routine = inner_thread;
  393. queue[num_cpu].args = &newarg;
  394. queue[num_cpu].range_m = NULL;
  395. queue[num_cpu].range_n = range;
  396. queue[num_cpu].sa = NULL;
  397. queue[num_cpu].sb = NULL;
  398. queue[num_cpu].next = &queue[num_cpu + 1];
  399. num_cpu ++;
  400. i += width;
  401. }
  402. #endif
  403. newarg.nthreads = num_cpu;
  404. if (num_cpu) {
  405. for (j = 0; j < num_cpu; j++) {
  406. for (i = 0; i < num_cpu; i++) {
  407. for (k = 0; k < DIVIDE_RATE; k++) {
  408. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  409. }
  410. }
  411. }
  412. queue[0].sa = sa;
  413. queue[0].sb = sb;
  414. queue[num_cpu - 1].next = NULL;
  415. exec_blas(num_cpu, queue);
  416. }
  417. #ifdef USE_ALLOC_HEAP
  418. free(job);
  419. #endif
  420. return 0;
  421. }
  422. #endif
  423. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  424. BLASLONG n, bk, i, blocking, lda;
  425. BLASLONG info;
  426. int mode;
  427. blas_arg_t newarg;
  428. FLOAT *a;
  429. FLOAT alpha[2] = { -ONE, ZERO};
  430. #ifndef COMPLEX
  431. #ifdef XDOUBLE
  432. mode = BLAS_XDOUBLE | BLAS_REAL;
  433. #elif defined(DOUBLE)
  434. mode = BLAS_DOUBLE | BLAS_REAL;
  435. #else
  436. mode = BLAS_SINGLE | BLAS_REAL;
  437. #endif
  438. #else
  439. #ifdef XDOUBLE
  440. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  441. #elif defined(DOUBLE)
  442. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  443. #else
  444. mode = BLAS_SINGLE | BLAS_COMPLEX;
  445. #endif
  446. #endif
  447. if (args -> nthreads == 1) {
  448. #ifndef LOWER
  449. info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0);
  450. #else
  451. info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0);
  452. #endif
  453. return info;
  454. }
  455. n = args -> n;
  456. a = (FLOAT *)args -> a;
  457. lda = args -> lda;
  458. if (range_n) n = range_n[1] - range_n[0];
  459. if (n <= GEMM_UNROLL_N * 2) {
  460. #ifndef LOWER
  461. info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0);
  462. #else
  463. info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0);
  464. #endif
  465. return info;
  466. }
  467. newarg.lda = lda;
  468. newarg.ldb = lda;
  469. newarg.ldc = lda;
  470. newarg.alpha = alpha;
  471. newarg.beta = NULL;
  472. newarg.nthreads = args -> nthreads;
  473. blocking = ((n / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  474. if (blocking > GEMM_Q) blocking = GEMM_Q;
  475. for (i = 0; i < n; i += blocking) {
  476. bk = n - i;
  477. if (bk > blocking) bk = blocking;
  478. newarg.m = bk;
  479. newarg.n = bk;
  480. newarg.a = a + (i + i * lda) * COMPSIZE;
  481. info = CNAME(&newarg, NULL, NULL, sa, sb, 0);
  482. if (info) return info + i;
  483. if (n - i - bk > 0) {
  484. #ifndef USE_SIMPLE_THREADED_LEVEL3
  485. newarg.m = n - i - bk;
  486. newarg.k = bk;
  487. #ifndef LOWER
  488. newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE;
  489. #else
  490. newarg.b = a + ((i + bk) + i * lda) * COMPSIZE;
  491. #endif
  492. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  493. thread_driver(&newarg, sa, sb);
  494. #else
  495. #ifndef LOWER
  496. newarg.m = bk;
  497. newarg.n = n - i - bk;
  498. newarg.a = a + (i + i * lda) * COMPSIZE;
  499. newarg.b = a + (i + (i + bk) * lda) * COMPSIZE;
  500. gemm_thread_n(mode | BLAS_TRANSA_T,
  501. &newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads);
  502. newarg.n = n - i - bk;
  503. newarg.k = bk;
  504. newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE;
  505. newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE;
  506. #if 0
  507. HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0);
  508. #else
  509. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T,
  510. &newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads);
  511. #endif
  512. #else
  513. newarg.m = n - i - bk;
  514. newarg.n = bk;
  515. newarg.a = a + (i + i * lda) * COMPSIZE;
  516. newarg.b = a + (i + bk + i * lda) * COMPSIZE;
  517. gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO,
  518. &newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads);
  519. newarg.n = n - i - bk;
  520. newarg.k = bk;
  521. newarg.a = a + (i + bk + i * lda) * COMPSIZE;
  522. newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE;
  523. #if 0
  524. HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0);
  525. #else
  526. syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO,
  527. &newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads);
  528. #endif
  529. #endif
  530. #endif
  531. }
  532. }
  533. return 0;
  534. }