You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

getrf_parallel.c 26 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include "common.h"
  40. static FLOAT dm1 = -1.;
  41. double sqrt(double);
  42. //In this case, the recursive getrf_parallel may overflow the stack.
  43. //Instead, use malloc to alloc job_t.
  44. #if MAX_CPU_NUMBER > GETRF_MEM_ALLOC_THRESHOLD
  45. #define USE_ALLOC_HEAP
  46. #endif
  47. #ifndef CACHE_LINE_SIZE
  48. #define CACHE_LINE_SIZE 8
  49. #endif
  50. #ifndef DIVIDE_RATE
  51. #define DIVIDE_RATE 2
  52. #endif
  53. #define GEMM_PQ MAX(GEMM_P, GEMM_Q)
  54. #define REAL_GEMM_R (GEMM_R - GEMM_PQ)
  55. #ifndef GETRF_FACTOR
  56. #define GETRF_FACTOR 0.75
  57. #endif
  58. #undef GETRF_FACTOR
  59. #define GETRF_FACTOR 1.00
  60. #if defined(USE_PTHREAD_LOCK)
  61. static pthread_mutex_t getrf_lock = PTHREAD_MUTEX_INITIALIZER;
  62. #elif defined(USE_PTHREAD_SPINLOCK)
  63. static pthread_spinlock_t getrf_lock = 0;
  64. #else
  65. static BLASULONG getrf_lock = 0UL;
  66. #endif
  67. #if defined(USE_PTHREAD_LOCK)
  68. static pthread_mutex_t getrf_flag_lock = PTHREAD_MUTEX_INITIALIZER;
  69. #elif defined(USE_PTHREAD_SPINLOCK)
  70. static pthread_spinlock_t getrf_flag_lock = 0;
  71. #else
  72. static BLASULONG getrf_flag_lock = 0UL;
  73. #endif
  74. static __inline BLASLONG FORMULA1(BLASLONG M, BLASLONG N, BLASLONG IS, BLASLONG BK, BLASLONG T) {
  75. double m = (double)(M - IS - BK);
  76. double n = (double)(N - IS - BK);
  77. double b = (double)BK;
  78. double a = (double)T;
  79. return (BLASLONG)((n + GETRF_FACTOR * m * b * (1. - a) / (b + m)) / a);
  80. }
  81. #define FORMULA2(M, N, IS, BK, T) (BLASLONG)((double)(N - IS + BK) * (1. - sqrt(1. - 1. / (double)(T))))
  82. static void inner_basic_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  83. BLASLONG is, min_i;
  84. BLASLONG js, min_j;
  85. BLASLONG jjs, min_jj;
  86. BLASLONG m = args -> m;
  87. BLASLONG n = args -> n;
  88. BLASLONG k = args -> k;
  89. BLASLONG lda = args -> lda;
  90. BLASLONG off = args -> ldb;
  91. FLOAT *b = (FLOAT *)args -> b + (k ) * COMPSIZE;
  92. FLOAT *c = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  93. FLOAT *d = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  94. FLOAT *sbb = sb;
  95. volatile BLASLONG *flag = (volatile BLASLONG *)args -> d;
  96. blasint *ipiv = (blasint *)args -> c;
  97. if (range_n) {
  98. n = range_n[1] - range_n[0];
  99. c += range_n[0] * lda * COMPSIZE;
  100. d += range_n[0] * lda * COMPSIZE;
  101. }
  102. if (args -> a == NULL) {
  103. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  104. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  105. } else {
  106. sb = (FLOAT *)args -> a;
  107. }
  108. for (js = 0; js < n; js += REAL_GEMM_R) {
  109. min_j = n - js;
  110. if (min_j > REAL_GEMM_R) min_j = REAL_GEMM_R;
  111. for (jjs = js; jjs < js + min_j; jjs += GEMM_UNROLL_N){
  112. min_jj = js + min_j - jjs;
  113. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  114. if (0 && GEMM_UNROLL_N <= 8) {
  115. LASWP_NCOPY(min_jj, off + 1, off + k,
  116. c + (- off + jjs * lda) * COMPSIZE, lda,
  117. ipiv, sbb + k * (jjs - js) * COMPSIZE);
  118. } else {
  119. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  120. #ifdef COMPLEX
  121. ZERO,
  122. #endif
  123. c + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  124. GEMM_ONCOPY (k, min_jj, c + jjs * lda * COMPSIZE, lda, sbb + (jjs - js) * k * COMPSIZE);
  125. }
  126. for (is = 0; is < k; is += GEMM_P) {
  127. min_i = k - is;
  128. if (min_i > GEMM_P) min_i = GEMM_P;
  129. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  130. #ifdef COMPLEX
  131. ZERO,
  132. #endif
  133. sb + k * is * COMPSIZE,
  134. sbb + (jjs - js) * k * COMPSIZE,
  135. c + (is + jjs * lda) * COMPSIZE, lda, is);
  136. }
  137. }
  138. if ((js + REAL_GEMM_R >= n) && (mypos >= 0)) flag[mypos * CACHE_LINE_SIZE] = 0;
  139. for (is = 0; is < m; is += GEMM_P){
  140. min_i = m - is;
  141. if (min_i > GEMM_P) min_i = GEMM_P;
  142. GEMM_ITCOPY (k, min_i, b + is * COMPSIZE, lda, sa);
  143. GEMM_KERNEL_N(min_i, min_j, k, dm1,
  144. #ifdef COMPLEX
  145. ZERO,
  146. #endif
  147. sa, sbb, d + (is + js * lda) * COMPSIZE, lda);
  148. }
  149. }
  150. }
  151. /* Non blocking implementation */
  152. typedef struct {
  153. volatile BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE];
  154. } job_t;
  155. #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER);
  156. #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER);
  157. #ifndef COMPLEX
  158. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  159. GEMM_KERNEL_N(M, N, K, dm1, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  160. #else
  161. #define KERNEL_OPERATION(M, N, K, SA, SB, C, LDC, X, Y) \
  162. GEMM_KERNEL_N(M, N, K, dm1, ZERO, SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC)
  163. #endif
  164. static int inner_advanced_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){
  165. job_t *job = (job_t *)args -> common;
  166. BLASLONG xxx, bufferside;
  167. FLOAT *buffer[DIVIDE_RATE];
  168. BLASLONG jjs, min_jj, div_n;
  169. BLASLONG i, current;
  170. BLASLONG is, min_i;
  171. BLASLONG m, n_from, n_to;
  172. BLASLONG k = args -> k;
  173. BLASLONG lda = args -> lda;
  174. BLASLONG off = args -> ldb;
  175. FLOAT *a = (FLOAT *)args -> b + (k ) * COMPSIZE;
  176. FLOAT *b = (FLOAT *)args -> b + ( k * lda) * COMPSIZE;
  177. FLOAT *c = (FLOAT *)args -> b + (k + k * lda) * COMPSIZE;
  178. FLOAT *sbb= sb;
  179. blasint *ipiv = (blasint *)args -> c;
  180. //_Atomic
  181. BLASLONG jw;
  182. _Atomic BLASLONG *flag = (_Atomic BLASLONG *)args -> d;
  183. if (args -> a == NULL) {
  184. TRSM_ILTCOPY(k, k, (FLOAT *)args -> b, lda, 0, sb);
  185. sbb = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  186. } else {
  187. sb = (FLOAT *)args -> a;
  188. }
  189. m = range_m[1] - range_m[0];
  190. n_from = range_n[mypos + 0];
  191. n_to = range_n[mypos + 1];
  192. a += range_m[0] * COMPSIZE;
  193. c += range_m[0] * COMPSIZE;
  194. div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE;
  195. buffer[0] = sbb;
  196. for (i = 1; i < DIVIDE_RATE; i++) {
  197. buffer[i] = buffer[i - 1] + GEMM_Q * (((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N) * COMPSIZE;
  198. }
  199. for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) {
  200. for (i = 0; i < args -> nthreads; i++)
  201. #if 1
  202. {
  203. LOCK_COMMAND(&getrf_lock);
  204. jw = job[mypos].working[i][CACHE_LINE_SIZE * bufferside];
  205. UNLOCK_COMMAND(&getrf_lock);
  206. do {
  207. LOCK_COMMAND(&getrf_lock);
  208. jw = job[mypos].working[i][CACHE_LINE_SIZE * bufferside];
  209. UNLOCK_COMMAND(&getrf_lock);
  210. } while (jw);
  211. }
  212. #else
  213. while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {};
  214. #endif
  215. for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){
  216. min_jj = MIN(n_to, xxx + div_n) - jjs;
  217. if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N;
  218. if (0 && GEMM_UNROLL_N <= 8) {
  219. printf("helllo\n");
  220. LASWP_NCOPY(min_jj, off + 1, off + k,
  221. b + (- off + jjs * lda) * COMPSIZE, lda,
  222. ipiv, buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  223. } else {
  224. LASWP_PLUS(min_jj, off + 1, off + k, ZERO,
  225. #ifdef COMPLEX
  226. ZERO,
  227. #endif
  228. b + (- off + jjs * lda) * COMPSIZE, lda, NULL, 0, ipiv, 1);
  229. GEMM_ONCOPY (k, min_jj, b + jjs * lda * COMPSIZE, lda,
  230. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE);
  231. }
  232. for (is = 0; is < k; is += GEMM_P) {
  233. min_i = k - is;
  234. if (min_i > GEMM_P) min_i = GEMM_P;
  235. TRSM_KERNEL_LT(min_i, min_jj, k, dm1,
  236. #ifdef COMPLEX
  237. ZERO,
  238. #endif
  239. sb + k * is * COMPSIZE,
  240. buffer[bufferside] + (jjs - xxx) * k * COMPSIZE,
  241. b + (is + jjs * lda) * COMPSIZE, lda, is);
  242. }
  243. }
  244. MB;
  245. for (i = 0; i < args -> nthreads; i++) {
  246. LOCK_COMMAND(&getrf_lock);
  247. job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside];
  248. UNLOCK_COMMAND(&getrf_lock);
  249. }
  250. }
  251. LOCK_COMMAND(&getrf_flag_lock);
  252. flag[mypos * CACHE_LINE_SIZE] = 0;
  253. UNLOCK_COMMAND(&getrf_flag_lock);
  254. if (m == 0) {
  255. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  256. LOCK_COMMAND(&getrf_lock);
  257. job[mypos].working[mypos][CACHE_LINE_SIZE * xxx] = 0;
  258. UNLOCK_COMMAND(&getrf_lock);
  259. }
  260. }
  261. for(is = 0; is < m; is += min_i){
  262. min_i = m - is;
  263. if (min_i >= GEMM_P * 2) {
  264. min_i = GEMM_P;
  265. } else
  266. if (min_i > GEMM_P) {
  267. min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M;
  268. }
  269. ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa);
  270. current = mypos;
  271. do {
  272. div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE;
  273. for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) {
  274. if ((current != mypos) && (!is)) {
  275. #if 1
  276. LOCK_COMMAND(&getrf_lock);
  277. jw = job[current].working[mypos][CACHE_LINE_SIZE * bufferside];
  278. UNLOCK_COMMAND(&getrf_lock);
  279. do {
  280. LOCK_COMMAND(&getrf_lock);
  281. jw = job[current].working[mypos][CACHE_LINE_SIZE * bufferside];
  282. UNLOCK_COMMAND(&getrf_lock);
  283. } while (jw == 0);
  284. #else
  285. while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {};
  286. #endif
  287. }
  288. KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k,
  289. sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside],
  290. c, lda, is, xxx);
  291. MB;
  292. if (is + min_i >= m) {
  293. LOCK_COMMAND(&getrf_lock);
  294. job[current].working[mypos][CACHE_LINE_SIZE * bufferside] = 0;
  295. UNLOCK_COMMAND(&getrf_lock);
  296. }
  297. }
  298. current ++;
  299. if (current >= args -> nthreads) current = 0;
  300. } while (current != mypos);
  301. }
  302. for (i = 0; i < args -> nthreads; i++) {
  303. for (xxx = 0; xxx < DIVIDE_RATE; xxx++) {
  304. #if 1
  305. LOCK_COMMAND(&getrf_lock);
  306. jw = job[mypos].working[i][CACHE_LINE_SIZE *xxx];
  307. UNLOCK_COMMAND(&getrf_lock);
  308. do {
  309. LOCK_COMMAND(&getrf_lock);
  310. jw = job[mypos].working[i][CACHE_LINE_SIZE *xxx];
  311. UNLOCK_COMMAND(&getrf_lock);
  312. } while(jw != 0);
  313. #else
  314. while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {};
  315. #endif
  316. }
  317. }
  318. return 0;
  319. }
  320. #if 1
  321. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  322. BLASLONG m, n, mn, lda, offset;
  323. BLASLONG init_bk, next_bk, range_n_mine[2], range_n_new[2];
  324. blasint *ipiv, iinfo, info;
  325. int mode;
  326. blas_arg_t newarg;
  327. FLOAT *a, *sbb;
  328. FLOAT dummyalpha[2] = {ZERO, ZERO};
  329. blas_queue_t queue[MAX_CPU_NUMBER];
  330. BLASLONG range_M[MAX_CPU_NUMBER + 1];
  331. BLASLONG range_N[MAX_CPU_NUMBER + 1];
  332. #ifndef USE_ALLOC_HEAP
  333. job_t job[MAX_CPU_NUMBER];
  334. #else
  335. job_t * job=NULL;
  336. #endif
  337. BLASLONG width, nn, mm;
  338. BLASLONG i, j, k, is, bk;
  339. BLASLONG num_cpu;
  340. BLASLONG f;
  341. #ifdef _MSC_VER
  342. BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE];
  343. #else
  344. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  345. #endif
  346. #ifndef COMPLEX
  347. #ifdef XDOUBLE
  348. mode = BLAS_XDOUBLE | BLAS_REAL;
  349. #elif defined(DOUBLE)
  350. mode = BLAS_DOUBLE | BLAS_REAL;
  351. #else
  352. mode = BLAS_SINGLE | BLAS_REAL;
  353. #endif
  354. #else
  355. #ifdef XDOUBLE
  356. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  357. #elif defined(DOUBLE)
  358. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  359. #else
  360. mode = BLAS_SINGLE | BLAS_COMPLEX;
  361. #endif
  362. #endif
  363. m = args -> m;
  364. n = args -> n;
  365. a = (FLOAT *)args -> a;
  366. lda = args -> lda;
  367. ipiv = (blasint *)args -> c;
  368. offset = 0;
  369. if (range_n) {
  370. m -= range_n[0];
  371. n = range_n[1] - range_n[0];
  372. offset = range_n[0];
  373. a += range_n[0] * (lda + 1) * COMPSIZE;
  374. }
  375. if (m <= 0 || n <= 0) return 0;
  376. newarg.c = ipiv;
  377. newarg.lda = lda;
  378. info = 0;
  379. mn = MIN(m, n);
  380. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  381. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  382. if (init_bk <= GEMM_UNROLL_N) {
  383. info = GETF2(args, NULL, range_n, sa, sb, 0);
  384. return info;
  385. }
  386. next_bk = init_bk;
  387. bk = mn;
  388. if (bk > next_bk) bk = next_bk;
  389. range_n_new[0] = offset;
  390. range_n_new[1] = offset + bk;
  391. iinfo = CNAME(args, NULL, range_n_new, sa, sb, 0);
  392. if (iinfo && !info) info = iinfo;
  393. #ifdef USE_ALLOC_HEAP
  394. job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t));
  395. if(job==NULL){
  396. fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__);
  397. exit(1);
  398. }
  399. #endif
  400. newarg.common = (void *)job;
  401. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  402. sbb = (FLOAT *)((((BLASULONG)(sb + bk * bk * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  403. is = 0;
  404. num_cpu = 0;
  405. while (is < mn) {
  406. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  407. if (width > mn - is - bk) width = mn - is - bk;
  408. if (width < bk) {
  409. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  410. if (next_bk > bk) next_bk = bk;
  411. width = next_bk;
  412. if (width > mn - is - bk) width = mn - is - bk;
  413. }
  414. if (num_cpu > 0) exec_blas_async_wait(num_cpu, &queue[0]);
  415. mm = m - bk - is;
  416. nn = n - bk - is;
  417. newarg.a = sb;
  418. newarg.b = a + (is + is * lda) * COMPSIZE;
  419. newarg.d = (void *)flag;
  420. newarg.m = mm;
  421. newarg.n = nn;
  422. newarg.k = bk;
  423. newarg.ldb = is + offset;
  424. nn -= width;
  425. range_n_mine[0] = 0;
  426. range_n_mine[1] = width;
  427. range_N[0] = width;
  428. range_M[0] = 0;
  429. num_cpu = 0;
  430. while (nn > 0){
  431. if (mm >= nn) {
  432. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  433. if (width == 0) width = nn;
  434. if (nn < width) width = nn;
  435. nn -= width;
  436. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  437. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  438. if (width == 0) width = mm;
  439. if (mm < width) width = mm;
  440. if (nn <= 0) width = mm;
  441. mm -= width;
  442. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  443. } else {
  444. width = blas_quickdivide(mm + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  445. if (width == 0) width = mm;
  446. if (mm < width) width = mm;
  447. mm -= width;
  448. range_M[num_cpu + 1] = range_M[num_cpu] + width;
  449. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu - 1);
  450. if (width == 0) width = nn;
  451. if (nn < width) width = nn;
  452. if (mm <= 0) width = nn;
  453. nn -= width;
  454. range_N[num_cpu + 1] = range_N[num_cpu] + width;
  455. }
  456. queue[num_cpu].mode = mode;
  457. queue[num_cpu].routine = inner_advanced_thread;
  458. queue[num_cpu].args = &newarg;
  459. queue[num_cpu].range_m = &range_M[num_cpu];
  460. queue[num_cpu].range_n = &range_N[0];
  461. queue[num_cpu].sa = NULL;
  462. queue[num_cpu].sb = NULL;
  463. queue[num_cpu].next = &queue[num_cpu + 1];
  464. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  465. num_cpu ++;
  466. }
  467. newarg.nthreads = num_cpu;
  468. if (num_cpu > 0) {
  469. for (j = 0; j < num_cpu; j++) {
  470. for (i = 0; i < num_cpu; i++) {
  471. for (k = 0; k < DIVIDE_RATE; k++) {
  472. job[j].working[i][CACHE_LINE_SIZE * k] = 0;
  473. }
  474. }
  475. }
  476. }
  477. is += bk;
  478. bk = mn - is;
  479. if (bk > next_bk) bk = next_bk;
  480. range_n_new[0] = offset + is;
  481. range_n_new[1] = offset + is + bk;
  482. if (num_cpu > 0) {
  483. queue[num_cpu - 1].next = NULL;
  484. exec_blas_async(0, &queue[0]);
  485. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  486. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  487. if (iinfo && !info) info = iinfo + is;
  488. for (i = 0; i < num_cpu; i ++) {
  489. #if 1
  490. LOCK_COMMAND(&getrf_flag_lock);
  491. f=flag[i*CACHE_LINE_SIZE];
  492. UNLOCK_COMMAND(&getrf_flag_lock);
  493. while (f!=0) {
  494. LOCK_COMMAND(&getrf_flag_lock);
  495. f=flag[i*CACHE_LINE_SIZE];
  496. UNLOCK_COMMAND(&getrf_flag_lock);
  497. };
  498. #else
  499. while (flag[i*CACHE_LINE_SIZE]) {};
  500. #endif
  501. }
  502. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  503. } else {
  504. inner_basic_thread(&newarg, NULL, range_n_mine, sa, sbb, -1);
  505. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  506. if (iinfo && !info) info = iinfo + is;
  507. }
  508. }
  509. next_bk = init_bk;
  510. is = 0;
  511. while (is < mn) {
  512. bk = mn - is;
  513. if (bk > next_bk) bk = next_bk;
  514. width = ((FORMULA1(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  515. if (width > mn - is - bk) width = mn - is - bk;
  516. if (width < bk) {
  517. next_bk = ((FORMULA2(m, n, is, bk, args -> nthreads) + GEMM_UNROLL_N)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  518. if (next_bk > bk) next_bk = bk;
  519. }
  520. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  521. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  522. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  523. is += bk;
  524. }
  525. #ifdef USE_ALLOC_HEAP
  526. free(job);
  527. #endif
  528. return info;
  529. }
  530. #else
  531. blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) {
  532. BLASLONG m, n, mn, lda, offset;
  533. BLASLONG i, is, bk, init_bk, next_bk, range_n_new[2];
  534. blasint *ipiv, iinfo, info;
  535. int mode;
  536. blas_arg_t newarg;
  537. FLOAT *a, *sbb;
  538. FLOAT dummyalpha[2] = {ZERO, ZERO};
  539. blas_queue_t queue[MAX_CPU_NUMBER];
  540. BLASLONG range[MAX_CPU_NUMBER + 1];
  541. BLASLONG width, nn, num_cpu;
  542. volatile BLASLONG flag[MAX_CPU_NUMBER * CACHE_LINE_SIZE] __attribute__((aligned(128)));
  543. #ifndef COMPLEX
  544. #ifdef XDOUBLE
  545. mode = BLAS_XDOUBLE | BLAS_REAL;
  546. #elif defined(DOUBLE)
  547. mode = BLAS_DOUBLE | BLAS_REAL;
  548. #else
  549. mode = BLAS_SINGLE | BLAS_REAL;
  550. #endif
  551. #else
  552. #ifdef XDOUBLE
  553. mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  554. #elif defined(DOUBLE)
  555. mode = BLAS_DOUBLE | BLAS_COMPLEX;
  556. #else
  557. mode = BLAS_SINGLE | BLAS_COMPLEX;
  558. #endif
  559. #endif
  560. m = args -> m;
  561. n = args -> n;
  562. a = (FLOAT *)args -> a;
  563. lda = args -> lda;
  564. ipiv = (blasint *)args -> c;
  565. offset = 0;
  566. if (range_n) {
  567. m -= range_n[0];
  568. n = range_n[1] - range_n[0];
  569. offset = range_n[0];
  570. a += range_n[0] * (lda + 1) * COMPSIZE;
  571. }
  572. if (m <= 0 || n <= 0) return 0;
  573. newarg.c = ipiv;
  574. newarg.lda = lda;
  575. newarg.common = NULL;
  576. newarg.nthreads = args -> nthreads;
  577. mn = MIN(m, n);
  578. init_bk = ((mn / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  579. if (init_bk > GEMM_Q) init_bk = GEMM_Q;
  580. if (init_bk <= GEMM_UNROLL_N) {
  581. info = GETF2(args, NULL, range_n, sa, sb, 0);
  582. return info;
  583. }
  584. width = FORMULA1(m, n, 0, init_bk, args -> nthreads);
  585. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  586. if (width > n - init_bk) width = n - init_bk;
  587. if (width < init_bk) {
  588. BLASLONG temp;
  589. temp = FORMULA2(m, n, 0, init_bk, args -> nthreads);
  590. temp = ((temp + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  591. if (temp < GEMM_UNROLL_N) temp = GEMM_UNROLL_N;
  592. if (temp < init_bk) init_bk = temp;
  593. }
  594. next_bk = init_bk;
  595. bk = init_bk;
  596. range_n_new[0] = offset;
  597. range_n_new[1] = offset + bk;
  598. info = CNAME(args, NULL, range_n_new, sa, sb, 0);
  599. TRSM_ILTCOPY(bk, bk, a, lda, 0, sb);
  600. is = 0;
  601. num_cpu = 0;
  602. sbb = (FLOAT *)((((BLASULONG)(sb + GEMM_PQ * GEMM_PQ * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B);
  603. while (is < mn) {
  604. width = FORMULA1(m, n, is, bk, args -> nthreads);
  605. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  606. if (width < bk) {
  607. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  608. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  609. if (next_bk > bk) next_bk = bk;
  610. #if 0
  611. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  612. #else
  613. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  614. #endif
  615. width = next_bk;
  616. }
  617. if (width > mn - is - bk) {
  618. next_bk = mn - is - bk;
  619. width = next_bk;
  620. }
  621. nn = n - bk - is;
  622. if (width > nn) width = nn;
  623. if (num_cpu > 1) exec_blas_async_wait(num_cpu - 1, &queue[1]);
  624. range[0] = 0;
  625. range[1] = width;
  626. num_cpu = 1;
  627. nn -= width;
  628. newarg.a = sb;
  629. newarg.b = a + (is + is * lda) * COMPSIZE;
  630. newarg.d = (void *)flag;
  631. newarg.m = m - bk - is;
  632. newarg.n = n - bk - is;
  633. newarg.k = bk;
  634. newarg.ldb = is + offset;
  635. while (nn > 0){
  636. width = blas_quickdivide(nn + args -> nthreads - num_cpu, args -> nthreads - num_cpu);
  637. nn -= width;
  638. if (nn < 0) width = width + nn;
  639. range[num_cpu + 1] = range[num_cpu] + width;
  640. queue[num_cpu].mode = mode;
  641. //queue[num_cpu].routine = inner_advanced_thread;
  642. queue[num_cpu].routine = (void *)inner_basic_thread;
  643. queue[num_cpu].args = &newarg;
  644. queue[num_cpu].range_m = NULL;
  645. queue[num_cpu].range_n = &range[num_cpu];
  646. queue[num_cpu].sa = NULL;
  647. queue[num_cpu].sb = NULL;
  648. queue[num_cpu].next = &queue[num_cpu + 1];
  649. flag[num_cpu * CACHE_LINE_SIZE] = 1;
  650. num_cpu ++;
  651. }
  652. queue[num_cpu - 1].next = NULL;
  653. is += bk;
  654. bk = n - is;
  655. if (bk > next_bk) bk = next_bk;
  656. range_n_new[0] = offset + is;
  657. range_n_new[1] = offset + is + bk;
  658. if (num_cpu > 1) {
  659. exec_blas_async(1, &queue[1]);
  660. #if 0
  661. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, 0);
  662. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  663. #else
  664. if (range[1] >= bk * 4) {
  665. BLASLONG myrange[2];
  666. myrange[0] = 0;
  667. myrange[1] = bk;
  668. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  669. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  670. myrange[0] = bk;
  671. myrange[1] = range[1];
  672. inner_basic_thread(&newarg, NULL, &myrange[0], sa, sbb, -1);
  673. } else {
  674. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  675. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  676. }
  677. #endif
  678. for (i = 1; i < num_cpu; i ++) while (flag[i * CACHE_LINE_SIZE]) {};
  679. TRSM_ILTCOPY(bk, bk, a + (is + is * lda) * COMPSIZE, lda, 0, sb);
  680. } else {
  681. inner_basic_thread(&newarg, NULL, &range[0], sa, sbb, -1);
  682. iinfo = GETRF_SINGLE(args, NULL, range_n_new, sa, sbb, 0);
  683. }
  684. if (iinfo && !info) info = iinfo + is;
  685. }
  686. next_bk = init_bk;
  687. bk = init_bk;
  688. is = 0;
  689. while (is < mn) {
  690. bk = mn - is;
  691. if (bk > next_bk) bk = next_bk;
  692. width = FORMULA1(m, n, is, bk, args -> nthreads);
  693. width = ((width + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  694. if (width < bk) {
  695. next_bk = FORMULA2(m, n, is, bk, args -> nthreads);
  696. next_bk = ((next_bk + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N;
  697. if (next_bk > bk) next_bk = bk;
  698. #if 0
  699. if (next_bk < GEMM_UNROLL_N) next_bk = MIN(GEMM_UNROLL_N, mn - bk - is);
  700. #else
  701. if (next_bk < GEMM_UNROLL_N) next_bk = MAX(GEMM_UNROLL_N, mn - bk - is);
  702. #endif
  703. }
  704. if (width > mn - is - bk) {
  705. next_bk = mn - is - bk;
  706. width = next_bk;
  707. }
  708. blas_level1_thread(mode, bk, is + bk + offset + 1, mn + offset, (void *)dummyalpha,
  709. a + (- offset + is * lda) * COMPSIZE, lda, NULL, 0,
  710. ipiv, 1, (void *)LASWP_PLUS, args -> nthreads);
  711. is += bk;
  712. }
  713. return info;
  714. }
  715. #endif