You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlavsp.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. *> \brief \b ZLAVSP
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  12. * INFO )
  13. *
  14. * .. Scalar Arguments ..
  15. * CHARACTER DIAG, TRANS, UPLO
  16. * INTEGER INFO, LDB, N, NRHS
  17. * ..
  18. * .. Array Arguments ..
  19. * INTEGER IPIV( * )
  20. * COMPLEX*16 A( * ), B( LDB, * )
  21. * ..
  22. *
  23. *
  24. *> \par Purpose:
  25. * =============
  26. *>
  27. *> \verbatim
  28. *>
  29. *> ZLAVSP performs one of the matrix-vector operations
  30. *> x := A*x or x := A^T*x,
  31. *> where x is an N element vector and A is one of the factors
  32. *> from the symmetric factorization computed by ZSPTRF.
  33. *> ZSPTRF produces a factorization of the form
  34. *> U * D * U^T or L * D * L^T,
  35. *> where U (or L) is a product of permutation and unit upper (lower)
  36. *> triangular matrices, U^T (or L^T) is the transpose of
  37. *> U (or L), and D is symmetric and block diagonal with 1 x 1 and
  38. *> 2 x 2 diagonal blocks. The multipliers for the transformations
  39. *> and the upper or lower triangular parts of the diagonal blocks
  40. *> are stored columnwise in packed format in the linear array A.
  41. *>
  42. *> If TRANS = 'N' or 'n', ZLAVSP multiplies either by U or U * D
  43. *> (or L or L * D).
  44. *> If TRANS = 'C' or 'c', ZLAVSP multiplies either by U^T or D * U^T
  45. *> (or L^T or D * L^T ).
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \verbatim
  52. *> UPLO - CHARACTER*1
  53. *> On entry, UPLO specifies whether the triangular matrix
  54. *> stored in A is upper or lower triangular.
  55. *> UPLO = 'U' or 'u' The matrix is upper triangular.
  56. *> UPLO = 'L' or 'l' The matrix is lower triangular.
  57. *> Unchanged on exit.
  58. *>
  59. *> TRANS - CHARACTER*1
  60. *> On entry, TRANS specifies the operation to be performed as
  61. *> follows:
  62. *> TRANS = 'N' or 'n' x := A*x.
  63. *> TRANS = 'T' or 't' x := A^T*x.
  64. *> Unchanged on exit.
  65. *>
  66. *> DIAG - CHARACTER*1
  67. *> On entry, DIAG specifies whether the diagonal blocks are
  68. *> assumed to be unit matrices, as follows:
  69. *> DIAG = 'U' or 'u' Diagonal blocks are unit matrices.
  70. *> DIAG = 'N' or 'n' Diagonal blocks are non-unit.
  71. *> Unchanged on exit.
  72. *>
  73. *> N - INTEGER
  74. *> On entry, N specifies the order of the matrix A.
  75. *> N must be at least zero.
  76. *> Unchanged on exit.
  77. *>
  78. *> NRHS - INTEGER
  79. *> On entry, NRHS specifies the number of right hand sides,
  80. *> i.e., the number of vectors x to be multiplied by A.
  81. *> NRHS must be at least zero.
  82. *> Unchanged on exit.
  83. *>
  84. *> A - COMPLEX*16 array, dimension( N*(N+1)/2 )
  85. *> On entry, A contains a block diagonal matrix and the
  86. *> multipliers of the transformations used to obtain it,
  87. *> stored as a packed triangular matrix.
  88. *> Unchanged on exit.
  89. *>
  90. *> IPIV - INTEGER array, dimension( N )
  91. *> On entry, IPIV contains the vector of pivot indices as
  92. *> determined by ZSPTRF.
  93. *> If IPIV( K ) = K, no interchange was done.
  94. *> If IPIV( K ) <> K but IPIV( K ) > 0, then row K was inter-
  95. *> changed with row IPIV( K ) and a 1 x 1 pivot block was used.
  96. *> If IPIV( K ) < 0 and UPLO = 'U', then row K-1 was exchanged
  97. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  98. *> If IPIV( K ) < 0 and UPLO = 'L', then row K+1 was exchanged
  99. *> with row | IPIV( K ) | and a 2 x 2 pivot block was used.
  100. *>
  101. *> B - COMPLEX*16 array, dimension( LDB, NRHS )
  102. *> On entry, B contains NRHS vectors of length N.
  103. *> On exit, B is overwritten with the product A * B.
  104. *>
  105. *> LDB - INTEGER
  106. *> On entry, LDB contains the leading dimension of B as
  107. *> declared in the calling program. LDB must be at least
  108. *> max( 1, N ).
  109. *> Unchanged on exit.
  110. *>
  111. *> INFO - INTEGER
  112. *> INFO is the error flag.
  113. *> On exit, a value of 0 indicates a successful exit.
  114. *> A negative value, say -K, indicates that the K-th argument
  115. *> has an illegal value.
  116. *> \endverbatim
  117. *
  118. * Authors:
  119. * ========
  120. *
  121. *> \author Univ. of Tennessee
  122. *> \author Univ. of California Berkeley
  123. *> \author Univ. of Colorado Denver
  124. *> \author NAG Ltd.
  125. *
  126. *> \ingroup complex16_lin
  127. *
  128. * =====================================================================
  129. SUBROUTINE ZLAVSP( UPLO, TRANS, DIAG, N, NRHS, A, IPIV, B, LDB,
  130. $ INFO )
  131. *
  132. * -- LAPACK test routine --
  133. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  134. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  135. *
  136. * .. Scalar Arguments ..
  137. CHARACTER DIAG, TRANS, UPLO
  138. INTEGER INFO, LDB, N, NRHS
  139. * ..
  140. * .. Array Arguments ..
  141. INTEGER IPIV( * )
  142. COMPLEX*16 A( * ), B( LDB, * )
  143. * ..
  144. *
  145. * =====================================================================
  146. *
  147. * .. Parameters ..
  148. COMPLEX*16 ONE
  149. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  150. * ..
  151. * .. Local Scalars ..
  152. LOGICAL NOUNIT
  153. INTEGER J, K, KC, KCNEXT, KP
  154. COMPLEX*16 D11, D12, D21, D22, T1, T2
  155. * ..
  156. * .. External Functions ..
  157. LOGICAL LSAME
  158. EXTERNAL LSAME
  159. * ..
  160. * .. External Subroutines ..
  161. EXTERNAL XERBLA, ZGEMV, ZGERU, ZSCAL, ZSWAP
  162. * ..
  163. * .. Intrinsic Functions ..
  164. INTRINSIC ABS, MAX
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172. INFO = -1
  173. ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'T' ) )
  174. $ THEN
  175. INFO = -2
  176. ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
  177. $ THEN
  178. INFO = -3
  179. ELSE IF( N.LT.0 ) THEN
  180. INFO = -4
  181. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  182. INFO = -8
  183. END IF
  184. IF( INFO.NE.0 ) THEN
  185. CALL XERBLA( 'ZLAVSP ', -INFO )
  186. RETURN
  187. END IF
  188. *
  189. * Quick return if possible.
  190. *
  191. IF( N.EQ.0 )
  192. $ RETURN
  193. *
  194. NOUNIT = LSAME( DIAG, 'N' )
  195. *------------------------------------------
  196. *
  197. * Compute B := A * B (No transpose)
  198. *
  199. *------------------------------------------
  200. IF( LSAME( TRANS, 'N' ) ) THEN
  201. *
  202. * Compute B := U*B
  203. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  204. *
  205. IF( LSAME( UPLO, 'U' ) ) THEN
  206. *
  207. * Loop forward applying the transformations.
  208. *
  209. K = 1
  210. KC = 1
  211. 10 CONTINUE
  212. IF( K.GT.N )
  213. $ GO TO 30
  214. *
  215. * 1 x 1 pivot block
  216. *
  217. IF( IPIV( K ).GT.0 ) THEN
  218. *
  219. * Multiply by the diagonal element if forming U * D.
  220. *
  221. IF( NOUNIT )
  222. $ CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  223. *
  224. * Multiply by P(K) * inv(U(K)) if K > 1.
  225. *
  226. IF( K.GT.1 ) THEN
  227. *
  228. * Apply the transformation.
  229. *
  230. CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  231. $ LDB, B( 1, 1 ), LDB )
  232. *
  233. * Interchange if P(K) != I.
  234. *
  235. KP = IPIV( K )
  236. IF( KP.NE.K )
  237. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  238. END IF
  239. KC = KC + K
  240. K = K + 1
  241. ELSE
  242. *
  243. * 2 x 2 pivot block
  244. *
  245. KCNEXT = KC + K
  246. *
  247. * Multiply by the diagonal block if forming U * D.
  248. *
  249. IF( NOUNIT ) THEN
  250. D11 = A( KCNEXT-1 )
  251. D22 = A( KCNEXT+K )
  252. D12 = A( KCNEXT+K-1 )
  253. D21 = D12
  254. DO 20 J = 1, NRHS
  255. T1 = B( K, J )
  256. T2 = B( K+1, J )
  257. B( K, J ) = D11*T1 + D12*T2
  258. B( K+1, J ) = D21*T1 + D22*T2
  259. 20 CONTINUE
  260. END IF
  261. *
  262. * Multiply by P(K) * inv(U(K)) if K > 1.
  263. *
  264. IF( K.GT.1 ) THEN
  265. *
  266. * Apply the transformations.
  267. *
  268. CALL ZGERU( K-1, NRHS, ONE, A( KC ), 1, B( K, 1 ),
  269. $ LDB, B( 1, 1 ), LDB )
  270. CALL ZGERU( K-1, NRHS, ONE, A( KCNEXT ), 1,
  271. $ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
  272. *
  273. * Interchange if P(K) != I.
  274. *
  275. KP = ABS( IPIV( K ) )
  276. IF( KP.NE.K )
  277. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  278. END IF
  279. KC = KCNEXT + K + 1
  280. K = K + 2
  281. END IF
  282. GO TO 10
  283. 30 CONTINUE
  284. *
  285. * Compute B := L*B
  286. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
  287. *
  288. ELSE
  289. *
  290. * Loop backward applying the transformations to B.
  291. *
  292. K = N
  293. KC = N*( N+1 ) / 2 + 1
  294. 40 CONTINUE
  295. IF( K.LT.1 )
  296. $ GO TO 60
  297. KC = KC - ( N-K+1 )
  298. *
  299. * Test the pivot index. If greater than zero, a 1 x 1
  300. * pivot was used, otherwise a 2 x 2 pivot was used.
  301. *
  302. IF( IPIV( K ).GT.0 ) THEN
  303. *
  304. * 1 x 1 pivot block:
  305. *
  306. * Multiply by the diagonal element if forming L * D.
  307. *
  308. IF( NOUNIT )
  309. $ CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  310. *
  311. * Multiply by P(K) * inv(L(K)) if K < N.
  312. *
  313. IF( K.NE.N ) THEN
  314. KP = IPIV( K )
  315. *
  316. * Apply the transformation.
  317. *
  318. CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  319. $ LDB, B( K+1, 1 ), LDB )
  320. *
  321. * Interchange if a permutation was applied at the
  322. * K-th step of the factorization.
  323. *
  324. IF( KP.NE.K )
  325. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  326. END IF
  327. K = K - 1
  328. *
  329. ELSE
  330. *
  331. * 2 x 2 pivot block:
  332. *
  333. KCNEXT = KC - ( N-K+2 )
  334. *
  335. * Multiply by the diagonal block if forming L * D.
  336. *
  337. IF( NOUNIT ) THEN
  338. D11 = A( KCNEXT )
  339. D22 = A( KC )
  340. D21 = A( KCNEXT+1 )
  341. D12 = D21
  342. DO 50 J = 1, NRHS
  343. T1 = B( K-1, J )
  344. T2 = B( K, J )
  345. B( K-1, J ) = D11*T1 + D12*T2
  346. B( K, J ) = D21*T1 + D22*T2
  347. 50 CONTINUE
  348. END IF
  349. *
  350. * Multiply by P(K) * inv(L(K)) if K < N.
  351. *
  352. IF( K.NE.N ) THEN
  353. *
  354. * Apply the transformation.
  355. *
  356. CALL ZGERU( N-K, NRHS, ONE, A( KC+1 ), 1, B( K, 1 ),
  357. $ LDB, B( K+1, 1 ), LDB )
  358. CALL ZGERU( N-K, NRHS, ONE, A( KCNEXT+2 ), 1,
  359. $ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
  360. *
  361. * Interchange if a permutation was applied at the
  362. * K-th step of the factorization.
  363. *
  364. KP = ABS( IPIV( K ) )
  365. IF( KP.NE.K )
  366. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  367. END IF
  368. KC = KCNEXT
  369. K = K - 2
  370. END IF
  371. GO TO 40
  372. 60 CONTINUE
  373. END IF
  374. *-------------------------------------------------
  375. *
  376. * Compute B := A^T * B (transpose)
  377. *
  378. *-------------------------------------------------
  379. ELSE
  380. *
  381. * Form B := U^T*B
  382. * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
  383. * and U^T = inv(U^T(1))*P(1)* ... *inv(U^T(m))*P(m)
  384. *
  385. IF( LSAME( UPLO, 'U' ) ) THEN
  386. *
  387. * Loop backward applying the transformations.
  388. *
  389. K = N
  390. KC = N*( N+1 ) / 2 + 1
  391. 70 CONTINUE
  392. IF( K.LT.1 )
  393. $ GO TO 90
  394. KC = KC - K
  395. *
  396. * 1 x 1 pivot block.
  397. *
  398. IF( IPIV( K ).GT.0 ) THEN
  399. IF( K.GT.1 ) THEN
  400. *
  401. * Interchange if P(K) != I.
  402. *
  403. KP = IPIV( K )
  404. IF( KP.NE.K )
  405. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  406. *
  407. * Apply the transformation:
  408. * y := y - B' * conjg(x)
  409. * where x is a column of A and y is a row of B.
  410. *
  411. CALL ZGEMV( 'Transpose', K-1, NRHS, ONE, B, LDB,
  412. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  413. END IF
  414. IF( NOUNIT )
  415. $ CALL ZSCAL( NRHS, A( KC+K-1 ), B( K, 1 ), LDB )
  416. K = K - 1
  417. *
  418. * 2 x 2 pivot block.
  419. *
  420. ELSE
  421. KCNEXT = KC - ( K-1 )
  422. IF( K.GT.2 ) THEN
  423. *
  424. * Interchange if P(K) != I.
  425. *
  426. KP = ABS( IPIV( K ) )
  427. IF( KP.NE.K-1 )
  428. $ CALL ZSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
  429. $ LDB )
  430. *
  431. * Apply the transformations.
  432. *
  433. CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  434. $ A( KC ), 1, ONE, B( K, 1 ), LDB )
  435. *
  436. CALL ZGEMV( 'Transpose', K-2, NRHS, ONE, B, LDB,
  437. $ A( KCNEXT ), 1, ONE, B( K-1, 1 ), LDB )
  438. END IF
  439. *
  440. * Multiply by the diagonal block if non-unit.
  441. *
  442. IF( NOUNIT ) THEN
  443. D11 = A( KC-1 )
  444. D22 = A( KC+K-1 )
  445. D12 = A( KC+K-2 )
  446. D21 = D12
  447. DO 80 J = 1, NRHS
  448. T1 = B( K-1, J )
  449. T2 = B( K, J )
  450. B( K-1, J ) = D11*T1 + D12*T2
  451. B( K, J ) = D21*T1 + D22*T2
  452. 80 CONTINUE
  453. END IF
  454. KC = KCNEXT
  455. K = K - 2
  456. END IF
  457. GO TO 70
  458. 90 CONTINUE
  459. *
  460. * Form B := L^T*B
  461. * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
  462. * and L^T = inv(L(m))*P(m)* ... *inv(L(1))*P(1)
  463. *
  464. ELSE
  465. *
  466. * Loop forward applying the L-transformations.
  467. *
  468. K = 1
  469. KC = 1
  470. 100 CONTINUE
  471. IF( K.GT.N )
  472. $ GO TO 120
  473. *
  474. * 1 x 1 pivot block
  475. *
  476. IF( IPIV( K ).GT.0 ) THEN
  477. IF( K.LT.N ) THEN
  478. *
  479. * Interchange if P(K) != I.
  480. *
  481. KP = IPIV( K )
  482. IF( KP.NE.K )
  483. $ CALL ZSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
  484. *
  485. * Apply the transformation
  486. *
  487. CALL ZGEMV( 'Transpose', N-K, NRHS, ONE, B( K+1, 1 ),
  488. $ LDB, A( KC+1 ), 1, ONE, B( K, 1 ), LDB )
  489. END IF
  490. IF( NOUNIT )
  491. $ CALL ZSCAL( NRHS, A( KC ), B( K, 1 ), LDB )
  492. KC = KC + N - K + 1
  493. K = K + 1
  494. *
  495. * 2 x 2 pivot block.
  496. *
  497. ELSE
  498. KCNEXT = KC + N - K + 1
  499. IF( K.LT.N-1 ) THEN
  500. *
  501. * Interchange if P(K) != I.
  502. *
  503. KP = ABS( IPIV( K ) )
  504. IF( KP.NE.K+1 )
  505. $ CALL ZSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
  506. $ LDB )
  507. *
  508. * Apply the transformation
  509. *
  510. CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
  511. $ B( K+2, 1 ), LDB, A( KCNEXT+1 ), 1, ONE,
  512. $ B( K+1, 1 ), LDB )
  513. *
  514. CALL ZGEMV( 'Transpose', N-K-1, NRHS, ONE,
  515. $ B( K+2, 1 ), LDB, A( KC+2 ), 1, ONE,
  516. $ B( K, 1 ), LDB )
  517. END IF
  518. *
  519. * Multiply by the diagonal block if non-unit.
  520. *
  521. IF( NOUNIT ) THEN
  522. D11 = A( KC )
  523. D22 = A( KCNEXT )
  524. D21 = A( KC+1 )
  525. D12 = D21
  526. DO 110 J = 1, NRHS
  527. T1 = B( K, J )
  528. T2 = B( K+1, J )
  529. B( K, J ) = D11*T1 + D12*T2
  530. B( K+1, J ) = D21*T1 + D22*T2
  531. 110 CONTINUE
  532. END IF
  533. KC = KCNEXT + ( N-K )
  534. K = K + 2
  535. END IF
  536. GO TO 100
  537. 120 CONTINUE
  538. END IF
  539. *
  540. END IF
  541. RETURN
  542. *
  543. * End of ZLAVSP
  544. *
  545. END