You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

debchvxx.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494
  1. *> \brief \b DEBCHVXX
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DEBCHVXX( THRESH, PATH )
  12. *
  13. * .. Scalar Arguments ..
  14. * DOUBLE PRECISION THRESH
  15. * CHARACTER*3 PATH
  16. * ..
  17. *
  18. *
  19. *> \par Purpose:
  20. * =============
  21. *>
  22. *> \verbatim
  23. *>
  24. *> DEBCHVXX will run D**SVXX on a series of Hilbert matrices and then
  25. *> compare the error bounds returned by D**SVXX to see if the returned
  26. *> answer indeed falls within those bounds.
  27. *>
  28. *> Eight test ratios will be computed. The tests will pass if they are .LT.
  29. *> THRESH. There are two cases that are determined by 1 / (SQRT( N ) * EPS).
  30. *> If that value is .LE. to the component wise reciprocal condition number,
  31. *> it uses the guaranteed case, other wise it uses the unguaranteed case.
  32. *>
  33. *> Test ratios:
  34. *> Let Xc be X_computed and Xt be X_truth.
  35. *> The norm used is the infinity norm.
  36. *>
  37. *> Let A be the guaranteed case and B be the unguaranteed case.
  38. *>
  39. *> 1. Normwise guaranteed forward error bound.
  40. *> A: norm ( abs( Xc - Xt ) / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ) and
  41. *> ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N),10) * EPS.
  42. *> If these conditions are met, the test ratio is set to be
  43. *> ERRBND( *, nwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
  44. *> B: For this case, CGESVXX should just return 1. If it is less than
  45. *> one, treat it the same as in 1A. Otherwise it fails. (Set test
  46. *> ratio to ERRBND( *, nwise_i, bnd_i ) * THRESH?)
  47. *>
  48. *> 2. Componentwise guaranteed forward error bound.
  49. *> A: norm ( abs( Xc(j) - Xt(j) ) ) / norm (Xt(j)) .LE. ERRBND( *, cwise_i, bnd_i )
  50. *> for all j .AND. ERRBND( *, cwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS.
  51. *> If these conditions are met, the test ratio is set to be
  52. *> ERRBND( *, cwise_i, bnd_i ) / MAX(SQRT(N), 10). Otherwise it is 1/EPS.
  53. *> B: Same as normwise test ratio.
  54. *>
  55. *> 3. Backwards error.
  56. *> A: The test ratio is set to BERR/EPS.
  57. *> B: Same test ratio.
  58. *>
  59. *> 4. Reciprocal condition number.
  60. *> A: A condition number is computed with Xt and compared with the one
  61. *> returned from CGESVXX. Let RCONDc be the RCOND returned by D**SVXX
  62. *> and RCONDt be the RCOND from the truth value. Test ratio is set to
  63. *> MAX(RCONDc/RCONDt, RCONDt/RCONDc).
  64. *> B: Test ratio is set to 1 / (EPS * RCONDc).
  65. *>
  66. *> 5. Reciprocal normwise condition number.
  67. *> A: The test ratio is set to
  68. *> MAX(ERRBND( *, nwise_i, cond_i ) / NCOND, NCOND / ERRBND( *, nwise_i, cond_i )).
  69. *> B: Test ratio is set to 1 / (EPS * ERRBND( *, nwise_i, cond_i )).
  70. *>
  71. *> 6. Reciprocal componentwise condition number.
  72. *> A: Test ratio is set to
  73. *> MAX(ERRBND( *, cwise_i, cond_i ) / CCOND, CCOND / ERRBND( *, cwise_i, cond_i )).
  74. *> B: Test ratio is set to 1 / (EPS * ERRBND( *, cwise_i, cond_i )).
  75. *>
  76. *> .. Parameters ..
  77. *> NMAX is determined by the largest number in the inverse of the hilbert
  78. *> matrix. Precision is exhausted when the largest entry in it is greater
  79. *> than 2 to the power of the number of bits in the fraction of the data
  80. *> type used plus one, which is 24 for single precision.
  81. *> NMAX should be 6 for single and 11 for double.
  82. *> \endverbatim
  83. *
  84. * Authors:
  85. * ========
  86. *
  87. *> \author Univ. of Tennessee
  88. *> \author Univ. of California Berkeley
  89. *> \author Univ. of Colorado Denver
  90. *> \author NAG Ltd.
  91. *
  92. *> \ingroup double_lin
  93. *
  94. * =====================================================================
  95. SUBROUTINE DEBCHVXX( THRESH, PATH )
  96. IMPLICIT NONE
  97. * .. Scalar Arguments ..
  98. DOUBLE PRECISION THRESH
  99. CHARACTER*3 PATH
  100. INTEGER NMAX, NPARAMS, NERRBND, NTESTS, KL, KU
  101. PARAMETER (NMAX = 10, NPARAMS = 2, NERRBND = 3,
  102. $ NTESTS = 6)
  103. * .. Local Scalars ..
  104. INTEGER N, NRHS, INFO, I ,J, k, NFAIL, LDA,
  105. $ N_AUX_TESTS, LDAB, LDAFB
  106. CHARACTER FACT, TRANS, UPLO, EQUED
  107. CHARACTER*2 C2
  108. CHARACTER(3) NGUAR, CGUAR
  109. LOGICAL printed_guide
  110. DOUBLE PRECISION NCOND, CCOND, M, NORMDIF, NORMT, RCOND,
  111. $ RNORM, RINORM, SUMR, SUMRI, EPS,
  112. $ BERR(NMAX), RPVGRW, ORCOND,
  113. $ CWISE_ERR, NWISE_ERR, CWISE_BND, NWISE_BND,
  114. $ CWISE_RCOND, NWISE_RCOND,
  115. $ CONDTHRESH, ERRTHRESH
  116. * .. Local Arrays ..
  117. DOUBLE PRECISION TSTRAT(NTESTS), RINV(NMAX), PARAMS(NPARAMS),
  118. $ S(NMAX),R(NMAX),C(NMAX), DIFF(NMAX, NMAX),
  119. $ ERRBND_N(NMAX*3), ERRBND_C(NMAX*3),
  120. $ A(NMAX,NMAX),INVHILB(NMAX,NMAX),X(NMAX,NMAX),
  121. $ AB( (NMAX-1)+(NMAX-1)+1, NMAX ),
  122. $ ABCOPY( (NMAX-1)+(NMAX-1)+1, NMAX ),
  123. $ AFB( 2*(NMAX-1)+(NMAX-1)+1, NMAX ),
  124. $ WORK(NMAX*3*5), AF(NMAX, NMAX),B(NMAX, NMAX),
  125. $ ACOPY(NMAX, NMAX)
  126. INTEGER IPIV(NMAX), IWORK(3*NMAX)
  127. * .. External Functions ..
  128. DOUBLE PRECISION DLAMCH
  129. * .. External Subroutines ..
  130. EXTERNAL DLAHILB, DGESVXX, DPOSVXX, DSYSVXX,
  131. $ DGBSVXX, DLACPY, LSAMEN
  132. LOGICAL LSAMEN
  133. * .. Intrinsic Functions ..
  134. INTRINSIC SQRT, MAX, ABS, DBLE
  135. * .. Parameters ..
  136. INTEGER NWISE_I, CWISE_I
  137. PARAMETER (NWISE_I = 1, CWISE_I = 1)
  138. INTEGER BND_I, COND_I
  139. PARAMETER (BND_I = 2, COND_I = 3)
  140. * Create the loop to test out the Hilbert matrices
  141. FACT = 'E'
  142. UPLO = 'U'
  143. TRANS = 'N'
  144. EQUED = 'N'
  145. EPS = DLAMCH('Epsilon')
  146. NFAIL = 0
  147. N_AUX_TESTS = 0
  148. LDA = NMAX
  149. LDAB = (NMAX-1)+(NMAX-1)+1
  150. LDAFB = 2*(NMAX-1)+(NMAX-1)+1
  151. C2 = PATH( 2: 3 )
  152. * Main loop to test the different Hilbert Matrices.
  153. printed_guide = .false.
  154. DO N = 1 , NMAX
  155. PARAMS(1) = -1
  156. PARAMS(2) = -1
  157. KL = N-1
  158. KU = N-1
  159. NRHS = n
  160. M = MAX(SQRT(DBLE(N)), 10.0D+0)
  161. * Generate the Hilbert matrix, its inverse, and the
  162. * right hand side, all scaled by the LCM(1,..,2N-1).
  163. CALL DLAHILB(N, N, A, LDA, INVHILB, LDA, B, LDA, WORK, INFO)
  164. * Copy A into ACOPY.
  165. CALL DLACPY('ALL', N, N, A, NMAX, ACOPY, NMAX)
  166. * Store A in band format for GB tests
  167. DO J = 1, N
  168. DO I = 1, KL+KU+1
  169. AB( I, J ) = 0.0D+0
  170. END DO
  171. END DO
  172. DO J = 1, N
  173. DO I = MAX( 1, J-KU ), MIN( N, J+KL )
  174. AB( KU+1+I-J, J ) = A( I, J )
  175. END DO
  176. END DO
  177. * Copy AB into ABCOPY.
  178. DO J = 1, N
  179. DO I = 1, KL+KU+1
  180. ABCOPY( I, J ) = 0.0D+0
  181. END DO
  182. END DO
  183. CALL DLACPY('ALL', KL+KU+1, N, AB, LDAB, ABCOPY, LDAB)
  184. * Call D**SVXX with default PARAMS and N_ERR_BND = 3.
  185. IF ( LSAMEN( 2, C2, 'SY' ) ) THEN
  186. CALL DSYSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
  187. $ IPIV, EQUED, S, B, LDA, X, LDA, ORCOND,
  188. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  189. $ PARAMS, WORK, IWORK, INFO)
  190. ELSE IF ( LSAMEN( 2, C2, 'PO' ) ) THEN
  191. CALL DPOSVXX(FACT, UPLO, N, NRHS, ACOPY, LDA, AF, LDA,
  192. $ EQUED, S, B, LDA, X, LDA, ORCOND,
  193. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  194. $ PARAMS, WORK, IWORK, INFO)
  195. ELSE IF ( LSAMEN( 2, C2, 'GB' ) ) THEN
  196. CALL DGBSVXX(FACT, TRANS, N, KL, KU, NRHS, ABCOPY,
  197. $ LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B,
  198. $ LDA, X, LDA, ORCOND, RPVGRW, BERR, NERRBND,
  199. $ ERRBND_N, ERRBND_C, NPARAMS, PARAMS, WORK, IWORK,
  200. $ INFO)
  201. ELSE
  202. CALL DGESVXX(FACT, TRANS, N, NRHS, ACOPY, LDA, AF, LDA,
  203. $ IPIV, EQUED, R, C, B, LDA, X, LDA, ORCOND,
  204. $ RPVGRW, BERR, NERRBND, ERRBND_N, ERRBND_C, NPARAMS,
  205. $ PARAMS, WORK, IWORK, INFO)
  206. END IF
  207. N_AUX_TESTS = N_AUX_TESTS + 1
  208. IF (ORCOND .LT. EPS) THEN
  209. ! Either factorization failed or the matrix is flagged, and 1 <=
  210. ! INFO <= N+1. We don't decide based on rcond anymore.
  211. ! IF (INFO .EQ. 0 .OR. INFO .GT. N+1) THEN
  212. ! NFAIL = NFAIL + 1
  213. ! WRITE (*, FMT=8000) N, INFO, ORCOND, RCOND
  214. ! END IF
  215. ELSE
  216. ! Either everything succeeded (INFO == 0) or some solution failed
  217. ! to converge (INFO > N+1).
  218. IF (INFO .GT. 0 .AND. INFO .LE. N+1) THEN
  219. NFAIL = NFAIL + 1
  220. WRITE (*, FMT=8000) C2, N, INFO, ORCOND, RCOND
  221. END IF
  222. END IF
  223. * Calculating the difference between D**SVXX's X and the true X.
  224. DO I = 1,N
  225. DO J =1,NRHS
  226. DIFF(I,J) = X(I,J) - INVHILB(I,J)
  227. END DO
  228. END DO
  229. * Calculating the RCOND
  230. RNORM = 0.0D+0
  231. RINORM = 0.0D+0
  232. IF ( LSAMEN( 2, C2, 'PO' ) .OR. LSAMEN( 2, C2, 'SY' ) ) THEN
  233. DO I = 1, N
  234. SUMR = 0.0D+0
  235. SUMRI = 0.0D+0
  236. DO J = 1, N
  237. SUMR = SUMR + S(I) * ABS(A(I,J)) * S(J)
  238. SUMRI = SUMRI + ABS(INVHILB(I, J)) / (S(J) * S(I))
  239. END DO
  240. RNORM = MAX(RNORM,SUMR)
  241. RINORM = MAX(RINORM,SUMRI)
  242. END DO
  243. ELSE IF ( LSAMEN( 2, C2, 'GE' ) .OR. LSAMEN( 2, C2, 'GB' ) )
  244. $ THEN
  245. DO I = 1, N
  246. SUMR = 0.0D+0
  247. SUMRI = 0.0D+0
  248. DO J = 1, N
  249. SUMR = SUMR + R(I) * ABS(A(I,J)) * C(J)
  250. SUMRI = SUMRI + ABS(INVHILB(I, J)) / (R(J) * C(I))
  251. END DO
  252. RNORM = MAX(RNORM,SUMR)
  253. RINORM = MAX(RINORM,SUMRI)
  254. END DO
  255. END IF
  256. RNORM = RNORM / ABS(A(1, 1))
  257. RCOND = 1.0D+0/(RNORM * RINORM)
  258. * Calculating the R for normwise rcond.
  259. DO I = 1, N
  260. RINV(I) = 0.0D+0
  261. END DO
  262. DO J = 1, N
  263. DO I = 1, N
  264. RINV(I) = RINV(I) + ABS(A(I,J))
  265. END DO
  266. END DO
  267. * Calculating the Normwise rcond.
  268. RINORM = 0.0D+0
  269. DO I = 1, N
  270. SUMRI = 0.0D+0
  271. DO J = 1, N
  272. SUMRI = SUMRI + ABS(INVHILB(I,J) * RINV(J))
  273. END DO
  274. RINORM = MAX(RINORM, SUMRI)
  275. END DO
  276. ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
  277. ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
  278. NCOND = ABS(A(1,1)) / RINORM
  279. CONDTHRESH = M * EPS
  280. ERRTHRESH = M * EPS
  281. DO K = 1, NRHS
  282. NORMT = 0.0D+0
  283. NORMDIF = 0.0D+0
  284. CWISE_ERR = 0.0D+0
  285. DO I = 1, N
  286. NORMT = MAX(ABS(INVHILB(I, K)), NORMT)
  287. NORMDIF = MAX(ABS(X(I,K) - INVHILB(I,K)), NORMDIF)
  288. IF (INVHILB(I,K) .NE. 0.0D+0) THEN
  289. CWISE_ERR = MAX(ABS(X(I,K) - INVHILB(I,K))
  290. $ /ABS(INVHILB(I,K)), CWISE_ERR)
  291. ELSE IF (X(I, K) .NE. 0.0D+0) THEN
  292. CWISE_ERR = DLAMCH('OVERFLOW')
  293. END IF
  294. END DO
  295. IF (NORMT .NE. 0.0D+0) THEN
  296. NWISE_ERR = NORMDIF / NORMT
  297. ELSE IF (NORMDIF .NE. 0.0D+0) THEN
  298. NWISE_ERR = DLAMCH('OVERFLOW')
  299. ELSE
  300. NWISE_ERR = 0.0D+0
  301. ENDIF
  302. DO I = 1, N
  303. RINV(I) = 0.0D+0
  304. END DO
  305. DO J = 1, N
  306. DO I = 1, N
  307. RINV(I) = RINV(I) + ABS(A(I, J) * INVHILB(J, K))
  308. END DO
  309. END DO
  310. RINORM = 0.0D+0
  311. DO I = 1, N
  312. SUMRI = 0.0D+0
  313. DO J = 1, N
  314. SUMRI = SUMRI
  315. $ + ABS(INVHILB(I, J) * RINV(J) / INVHILB(I, K))
  316. END DO
  317. RINORM = MAX(RINORM, SUMRI)
  318. END DO
  319. ! invhilb is the inverse *unscaled* Hilbert matrix, so scale its norm
  320. ! by 1/A(1,1) to make the scaling match A (the scaled Hilbert matrix)
  321. CCOND = ABS(A(1,1))/RINORM
  322. ! Forward error bound tests
  323. NWISE_BND = ERRBND_N(K + (BND_I-1)*NRHS)
  324. CWISE_BND = ERRBND_C(K + (BND_I-1)*NRHS)
  325. NWISE_RCOND = ERRBND_N(K + (COND_I-1)*NRHS)
  326. CWISE_RCOND = ERRBND_C(K + (COND_I-1)*NRHS)
  327. ! write (*,*) 'nwise : ', n, k, ncond, nwise_rcond,
  328. ! $ condthresh, ncond.ge.condthresh
  329. ! write (*,*) 'nwise2: ', k, nwise_bnd, nwise_err, errthresh
  330. IF (NCOND .GE. CONDTHRESH) THEN
  331. NGUAR = 'YES'
  332. IF (NWISE_BND .GT. ERRTHRESH) THEN
  333. TSTRAT(1) = 1/(2.0D+0*EPS)
  334. ELSE
  335. IF (NWISE_BND .NE. 0.0D+0) THEN
  336. TSTRAT(1) = NWISE_ERR / NWISE_BND
  337. ELSE IF (NWISE_ERR .NE. 0.0D+0) THEN
  338. TSTRAT(1) = 1/(16.0*EPS)
  339. ELSE
  340. TSTRAT(1) = 0.0D+0
  341. END IF
  342. IF (TSTRAT(1) .GT. 1.0D+0) THEN
  343. TSTRAT(1) = 1/(4.0D+0*EPS)
  344. END IF
  345. END IF
  346. ELSE
  347. NGUAR = 'NO'
  348. IF (NWISE_BND .LT. 1.0D+0) THEN
  349. TSTRAT(1) = 1/(8.0D+0*EPS)
  350. ELSE
  351. TSTRAT(1) = 1.0D+0
  352. END IF
  353. END IF
  354. ! write (*,*) 'cwise : ', n, k, ccond, cwise_rcond,
  355. ! $ condthresh, ccond.ge.condthresh
  356. ! write (*,*) 'cwise2: ', k, cwise_bnd, cwise_err, errthresh
  357. IF (CCOND .GE. CONDTHRESH) THEN
  358. CGUAR = 'YES'
  359. IF (CWISE_BND .GT. ERRTHRESH) THEN
  360. TSTRAT(2) = 1/(2.0D+0*EPS)
  361. ELSE
  362. IF (CWISE_BND .NE. 0.0D+0) THEN
  363. TSTRAT(2) = CWISE_ERR / CWISE_BND
  364. ELSE IF (CWISE_ERR .NE. 0.0D+0) THEN
  365. TSTRAT(2) = 1/(16.0D+0*EPS)
  366. ELSE
  367. TSTRAT(2) = 0.0D+0
  368. END IF
  369. IF (TSTRAT(2) .GT. 1.0D+0) TSTRAT(2) = 1/(4.0D+0*EPS)
  370. END IF
  371. ELSE
  372. CGUAR = 'NO'
  373. IF (CWISE_BND .LT. 1.0D+0) THEN
  374. TSTRAT(2) = 1/(8.0D+0*EPS)
  375. ELSE
  376. TSTRAT(2) = 1.0D+0
  377. END IF
  378. END IF
  379. ! Backwards error test
  380. TSTRAT(3) = BERR(K)/EPS
  381. ! Condition number tests
  382. TSTRAT(4) = RCOND / ORCOND
  383. IF (RCOND .GE. CONDTHRESH .AND. TSTRAT(4) .LT. 1.0D+0)
  384. $ TSTRAT(4) = 1.0D+0 / TSTRAT(4)
  385. TSTRAT(5) = NCOND / NWISE_RCOND
  386. IF (NCOND .GE. CONDTHRESH .AND. TSTRAT(5) .LT. 1.0D+0)
  387. $ TSTRAT(5) = 1.0D+0 / TSTRAT(5)
  388. TSTRAT(6) = CCOND / NWISE_RCOND
  389. IF (CCOND .GE. CONDTHRESH .AND. TSTRAT(6) .LT. 1.0D+0)
  390. $ TSTRAT(6) = 1.0D+0 / TSTRAT(6)
  391. DO I = 1, NTESTS
  392. IF (TSTRAT(I) .GT. THRESH) THEN
  393. IF (.NOT.PRINTED_GUIDE) THEN
  394. WRITE(*,*)
  395. WRITE( *, 9996) 1
  396. WRITE( *, 9995) 2
  397. WRITE( *, 9994) 3
  398. WRITE( *, 9993) 4
  399. WRITE( *, 9992) 5
  400. WRITE( *, 9991) 6
  401. WRITE( *, 9990) 7
  402. WRITE( *, 9989) 8
  403. WRITE(*,*)
  404. PRINTED_GUIDE = .TRUE.
  405. END IF
  406. WRITE( *, 9999) C2, N, K, NGUAR, CGUAR, I, TSTRAT(I)
  407. NFAIL = NFAIL + 1
  408. END IF
  409. END DO
  410. END DO
  411. c$$$ WRITE(*,*)
  412. c$$$ WRITE(*,*) 'Normwise Error Bounds'
  413. c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,nwise_i,bnd_i)
  414. c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,nwise_i,cond_i)
  415. c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,nwise_i,rawbnd_i)
  416. c$$$ WRITE(*,*)
  417. c$$$ WRITE(*,*) 'Componentwise Error Bounds'
  418. c$$$ WRITE(*,*) 'Guaranteed error bound: ',ERRBND(NRHS,cwise_i,bnd_i)
  419. c$$$ WRITE(*,*) 'Reciprocal condition number: ',ERRBND(NRHS,cwise_i,cond_i)
  420. c$$$ WRITE(*,*) 'Raw error estimate: ',ERRBND(NRHS,cwise_i,rawbnd_i)
  421. c$$$ print *, 'Info: ', info
  422. c$$$ WRITE(*,*)
  423. * WRITE(*,*) 'TSTRAT: ',TSTRAT
  424. END DO
  425. WRITE(*,*)
  426. IF( NFAIL .GT. 0 ) THEN
  427. WRITE(*,9998) C2, NFAIL, NTESTS*N+N_AUX_TESTS
  428. ELSE
  429. WRITE(*,9997) C2
  430. END IF
  431. 9999 FORMAT( ' D', A2, 'SVXX: N =', I2, ', RHS = ', I2,
  432. $ ', NWISE GUAR. = ', A, ', CWISE GUAR. = ', A,
  433. $ ' test(',I1,') =', G12.5 )
  434. 9998 FORMAT( ' D', A2, 'SVXX: ', I6, ' out of ', I6,
  435. $ ' tests failed to pass the threshold' )
  436. 9997 FORMAT( ' D', A2, 'SVXX passed the tests of error bounds' )
  437. * Test ratios.
  438. 9996 FORMAT( 3X, I2, ': Normwise guaranteed forward error', / 5X,
  439. $ 'Guaranteed case: if norm ( abs( Xc - Xt )',
  440. $ ' / norm ( Xt ) .LE. ERRBND( *, nwise_i, bnd_i ), then',
  441. $ / 5X,
  442. $ 'ERRBND( *, nwise_i, bnd_i ) .LE. MAX(SQRT(N), 10) * EPS')
  443. 9995 FORMAT( 3X, I2, ': Componentwise guaranteed forward error' )
  444. 9994 FORMAT( 3X, I2, ': Backwards error' )
  445. 9993 FORMAT( 3X, I2, ': Reciprocal condition number' )
  446. 9992 FORMAT( 3X, I2, ': Reciprocal normwise condition number' )
  447. 9991 FORMAT( 3X, I2, ': Raw normwise error estimate' )
  448. 9990 FORMAT( 3X, I2, ': Reciprocal componentwise condition number' )
  449. 9989 FORMAT( 3X, I2, ': Raw componentwise error estimate' )
  450. 8000 FORMAT( ' D', A2, 'SVXX: N =', I2, ', INFO = ', I3,
  451. $ ', ORCOND = ', G12.5, ', real RCOND = ', G12.5 )
  452. *
  453. * End of DEBCHVXX
  454. *
  455. END