You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dchkst2stg.f 72 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060
  1. *> \brief \b DCHKST2STG
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE DCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  13. * WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  14. * LWORK, IWORK, LIWORK, RESULT, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
  18. * $ NTYPES
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
  25. * $ D3( * ), D4( * ), D5( * ), RESULT( * ),
  26. * $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
  27. * $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
  28. * $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DCHKST2STG checks the symmetric eigenvalue problem routines
  38. *> using the 2-stage reduction techniques. Since the generation
  39. *> of Q or the vectors is not available in this release, we only
  40. *> compare the eigenvalue resulting when using the 2-stage to the
  41. *> one considered as reference using the standard 1-stage reduction
  42. *> DSYTRD. For that, we call the standard DSYTRD and compute D1 using
  43. *> DSTEQR, then we call the 2-stage DSYTRD_2STAGE with Upper and Lower
  44. *> and we compute D2 and D3 using DSTEQR and then we replaced tests
  45. *> 3 and 4 by tests 11 and 12. test 1 and 2 remain to verify that
  46. *> the 1-stage results are OK and can be trusted.
  47. *> This testing routine will converge to the DCHKST in the next
  48. *> release when vectors and generation of Q will be implemented.
  49. *>
  50. *> DSYTRD factors A as U S U' , where ' means transpose,
  51. *> S is symmetric tridiagonal, and U is orthogonal.
  52. *> DSYTRD can use either just the lower or just the upper triangle
  53. *> of A; DCHKST2STG checks both cases.
  54. *> U is represented as a product of Householder
  55. *> transformations, whose vectors are stored in the first
  56. *> n-1 columns of V, and whose scale factors are in TAU.
  57. *>
  58. *> DSPTRD does the same as DSYTRD, except that A and V are stored
  59. *> in "packed" format.
  60. *>
  61. *> DORGTR constructs the matrix U from the contents of V and TAU.
  62. *>
  63. *> DOPGTR constructs the matrix U from the contents of VP and TAU.
  64. *>
  65. *> DSTEQR factors S as Z D1 Z' , where Z is the orthogonal
  66. *> matrix of eigenvectors and D1 is a diagonal matrix with
  67. *> the eigenvalues on the diagonal. D2 is the matrix of
  68. *> eigenvalues computed when Z is not computed.
  69. *>
  70. *> DSTERF computes D3, the matrix of eigenvalues, by the
  71. *> PWK method, which does not yield eigenvectors.
  72. *>
  73. *> DPTEQR factors S as Z4 D4 Z4' , for a
  74. *> symmetric positive definite tridiagonal matrix.
  75. *> D5 is the matrix of eigenvalues computed when Z is not
  76. *> computed.
  77. *>
  78. *> DSTEBZ computes selected eigenvalues. WA1, WA2, and
  79. *> WA3 will denote eigenvalues computed to high
  80. *> absolute accuracy, with different range options.
  81. *> WR will denote eigenvalues computed to high relative
  82. *> accuracy.
  83. *>
  84. *> DSTEIN computes Y, the eigenvectors of S, given the
  85. *> eigenvalues.
  86. *>
  87. *> DSTEDC factors S as Z D1 Z' , where Z is the orthogonal
  88. *> matrix of eigenvectors and D1 is a diagonal matrix with
  89. *> the eigenvalues on the diagonal ('I' option). It may also
  90. *> update an input orthogonal matrix, usually the output
  91. *> from DSYTRD/DORGTR or DSPTRD/DOPGTR ('V' option). It may
  92. *> also just compute eigenvalues ('N' option).
  93. *>
  94. *> DSTEMR factors S as Z D1 Z' , where Z is the orthogonal
  95. *> matrix of eigenvectors and D1 is a diagonal matrix with
  96. *> the eigenvalues on the diagonal ('I' option). DSTEMR
  97. *> uses the Relatively Robust Representation whenever possible.
  98. *>
  99. *> When DCHKST2STG is called, a number of matrix "sizes" ("n's") and a
  100. *> number of matrix "types" are specified. For each size ("n")
  101. *> and each type of matrix, one matrix will be generated and used
  102. *> to test the symmetric eigenroutines. For each matrix, a number
  103. *> of tests will be performed:
  104. *>
  105. *> (1) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='U', ... )
  106. *>
  107. *> (2) | I - UV' | / ( n ulp ) DORGTR( UPLO='U', ... )
  108. *>
  109. *> (3) | A - V S V' | / ( |A| n ulp ) DSYTRD( UPLO='L', ... )
  110. *> replaced by | D1 - D2 | / ( |D1| ulp ) where D1 is the
  111. *> eigenvalue matrix computed using S and D2 is the
  112. *> eigenvalue matrix computed using S_2stage the output of
  113. *> DSYTRD_2STAGE("N", "U",....). D1 and D2 are computed
  114. *> via DSTEQR('N',...)
  115. *>
  116. *> (4) | I - UV' | / ( n ulp ) DORGTR( UPLO='L', ... )
  117. *> replaced by | D1 - D3 | / ( |D1| ulp ) where D1 is the
  118. *> eigenvalue matrix computed using S and D3 is the
  119. *> eigenvalue matrix computed using S_2stage the output of
  120. *> DSYTRD_2STAGE("N", "L",....). D1 and D3 are computed
  121. *> via DSTEQR('N',...)
  122. *>
  123. *> (5-8) Same as 1-4, but for DSPTRD and DOPGTR.
  124. *>
  125. *> (9) | S - Z D Z' | / ( |S| n ulp ) DSTEQR('V',...)
  126. *>
  127. *> (10) | I - ZZ' | / ( n ulp ) DSTEQR('V',...)
  128. *>
  129. *> (11) | D1 - D2 | / ( |D1| ulp ) DSTEQR('N',...)
  130. *>
  131. *> (12) | D1 - D3 | / ( |D1| ulp ) DSTERF
  132. *>
  133. *> (13) 0 if the true eigenvalues (computed by sturm count)
  134. *> of S are within THRESH of
  135. *> those in D1. 2*THRESH if they are not. (Tested using
  136. *> DSTECH)
  137. *>
  138. *> For S positive definite,
  139. *>
  140. *> (14) | S - Z4 D4 Z4' | / ( |S| n ulp ) DPTEQR('V',...)
  141. *>
  142. *> (15) | I - Z4 Z4' | / ( n ulp ) DPTEQR('V',...)
  143. *>
  144. *> (16) | D4 - D5 | / ( 100 |D4| ulp ) DPTEQR('N',...)
  145. *>
  146. *> When S is also diagonally dominant by the factor gamma < 1,
  147. *>
  148. *> (17) max | D4(i) - WR(i) | / ( |D4(i)| omega ) ,
  149. *> i
  150. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  151. *> DSTEBZ( 'A', 'E', ...)
  152. *>
  153. *> (18) | WA1 - D3 | / ( |D3| ulp ) DSTEBZ( 'A', 'E', ...)
  154. *>
  155. *> (19) ( max { min | WA2(i)-WA3(j) | } +
  156. *> i j
  157. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  158. *> i j
  159. *> DSTEBZ( 'I', 'E', ...)
  160. *>
  161. *> (20) | S - Y WA1 Y' | / ( |S| n ulp ) DSTEBZ, SSTEIN
  162. *>
  163. *> (21) | I - Y Y' | / ( n ulp ) DSTEBZ, SSTEIN
  164. *>
  165. *> (22) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('I')
  166. *>
  167. *> (23) | I - ZZ' | / ( n ulp ) DSTEDC('I')
  168. *>
  169. *> (24) | S - Z D Z' | / ( |S| n ulp ) DSTEDC('V')
  170. *>
  171. *> (25) | I - ZZ' | / ( n ulp ) DSTEDC('V')
  172. *>
  173. *> (26) | D1 - D2 | / ( |D1| ulp ) DSTEDC('V') and
  174. *> DSTEDC('N')
  175. *>
  176. *> Test 27 is disabled at the moment because DSTEMR does not
  177. *> guarantee high relatvie accuracy.
  178. *>
  179. *> (27) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  180. *> i
  181. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  182. *> DSTEMR('V', 'A')
  183. *>
  184. *> (28) max | D6(i) - WR(i) | / ( |D6(i)| omega ) ,
  185. *> i
  186. *> omega = 2 (2n-1) ULP (1 + 8 gamma**2) / (1 - gamma)**4
  187. *> DSTEMR('V', 'I')
  188. *>
  189. *> Tests 29 through 34 are disable at present because DSTEMR
  190. *> does not handle partial spectrum requests.
  191. *>
  192. *> (29) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'I')
  193. *>
  194. *> (30) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'I')
  195. *>
  196. *> (31) ( max { min | WA2(i)-WA3(j) | } +
  197. *> i j
  198. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  199. *> i j
  200. *> DSTEMR('N', 'I') vs. SSTEMR('V', 'I')
  201. *>
  202. *> (32) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'V')
  203. *>
  204. *> (33) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'V')
  205. *>
  206. *> (34) ( max { min | WA2(i)-WA3(j) | } +
  207. *> i j
  208. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  209. *> i j
  210. *> DSTEMR('N', 'V') vs. SSTEMR('V', 'V')
  211. *>
  212. *> (35) | S - Z D Z' | / ( |S| n ulp ) DSTEMR('V', 'A')
  213. *>
  214. *> (36) | I - ZZ' | / ( n ulp ) DSTEMR('V', 'A')
  215. *>
  216. *> (37) ( max { min | WA2(i)-WA3(j) | } +
  217. *> i j
  218. *> max { min | WA3(i)-WA2(j) | } ) / ( |D3| ulp )
  219. *> i j
  220. *> DSTEMR('N', 'A') vs. SSTEMR('V', 'A')
  221. *>
  222. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  223. *> each element NN(j) specifies one size.
  224. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  225. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  226. *> Currently, the list of possible types is:
  227. *>
  228. *> (1) The zero matrix.
  229. *> (2) The identity matrix.
  230. *>
  231. *> (3) A diagonal matrix with evenly spaced entries
  232. *> 1, ..., ULP and random signs.
  233. *> (ULP = (first number larger than 1) - 1 )
  234. *> (4) A diagonal matrix with geometrically spaced entries
  235. *> 1, ..., ULP and random signs.
  236. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  237. *> and random signs.
  238. *>
  239. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  240. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  241. *>
  242. *> (8) A matrix of the form U' D U, where U is orthogonal and
  243. *> D has evenly spaced entries 1, ..., ULP with random signs
  244. *> on the diagonal.
  245. *>
  246. *> (9) A matrix of the form U' D U, where U is orthogonal and
  247. *> D has geometrically spaced entries 1, ..., ULP with random
  248. *> signs on the diagonal.
  249. *>
  250. *> (10) A matrix of the form U' D U, where U is orthogonal and
  251. *> D has "clustered" entries 1, ULP,..., ULP with random
  252. *> signs on the diagonal.
  253. *>
  254. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  255. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  256. *>
  257. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  258. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  259. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  260. *> (16) Same as (8), but diagonal elements are all positive.
  261. *> (17) Same as (9), but diagonal elements are all positive.
  262. *> (18) Same as (10), but diagonal elements are all positive.
  263. *> (19) Same as (16), but multiplied by SQRT( overflow threshold )
  264. *> (20) Same as (16), but multiplied by SQRT( underflow threshold )
  265. *> (21) A diagonally dominant tridiagonal matrix with geometrically
  266. *> spaced diagonal entries 1, ..., ULP.
  267. *> \endverbatim
  268. *
  269. * Arguments:
  270. * ==========
  271. *
  272. *> \param[in] NSIZES
  273. *> \verbatim
  274. *> NSIZES is INTEGER
  275. *> The number of sizes of matrices to use. If it is zero,
  276. *> DCHKST2STG does nothing. It must be at least zero.
  277. *> \endverbatim
  278. *>
  279. *> \param[in] NN
  280. *> \verbatim
  281. *> NN is INTEGER array, dimension (NSIZES)
  282. *> An array containing the sizes to be used for the matrices.
  283. *> Zero values will be skipped. The values must be at least
  284. *> zero.
  285. *> \endverbatim
  286. *>
  287. *> \param[in] NTYPES
  288. *> \verbatim
  289. *> NTYPES is INTEGER
  290. *> The number of elements in DOTYPE. If it is zero, DCHKST2STG
  291. *> does nothing. It must be at least zero. If it is MAXTYP+1
  292. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  293. *> defined, which is to use whatever matrix is in A. This
  294. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  295. *> DOTYPE(MAXTYP+1) is .TRUE. .
  296. *> \endverbatim
  297. *>
  298. *> \param[in] DOTYPE
  299. *> \verbatim
  300. *> DOTYPE is LOGICAL array, dimension (NTYPES)
  301. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  302. *> matrix of that size and of type j will be generated.
  303. *> If NTYPES is smaller than the maximum number of types
  304. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  305. *> MAXTYP will not be generated. If NTYPES is larger
  306. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  307. *> will be ignored.
  308. *> \endverbatim
  309. *>
  310. *> \param[in,out] ISEED
  311. *> \verbatim
  312. *> ISEED is INTEGER array, dimension (4)
  313. *> On entry ISEED specifies the seed of the random number
  314. *> generator. The array elements should be between 0 and 4095;
  315. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  316. *> be odd. The random number generator uses a linear
  317. *> congruential sequence limited to small integers, and so
  318. *> should produce machine independent random numbers. The
  319. *> values of ISEED are changed on exit, and can be used in the
  320. *> next call to DCHKST2STG to continue the same random number
  321. *> sequence.
  322. *> \endverbatim
  323. *>
  324. *> \param[in] THRESH
  325. *> \verbatim
  326. *> THRESH is DOUBLE PRECISION
  327. *> A test will count as "failed" if the "error", computed as
  328. *> described above, exceeds THRESH. Note that the error
  329. *> is scaled to be O(1), so THRESH should be a reasonably
  330. *> small multiple of 1, e.g., 10 or 100. In particular,
  331. *> it should not depend on the precision (single vs. double)
  332. *> or the size of the matrix. It must be at least zero.
  333. *> \endverbatim
  334. *>
  335. *> \param[in] NOUNIT
  336. *> \verbatim
  337. *> NOUNIT is INTEGER
  338. *> The FORTRAN unit number for printing out error messages
  339. *> (e.g., if a routine returns IINFO not equal to 0.)
  340. *> \endverbatim
  341. *>
  342. *> \param[in,out] A
  343. *> \verbatim
  344. *> A is DOUBLE PRECISION array of
  345. *> dimension ( LDA , max(NN) )
  346. *> Used to hold the matrix whose eigenvalues are to be
  347. *> computed. On exit, A contains the last matrix actually
  348. *> used.
  349. *> \endverbatim
  350. *>
  351. *> \param[in] LDA
  352. *> \verbatim
  353. *> LDA is INTEGER
  354. *> The leading dimension of A. It must be at
  355. *> least 1 and at least max( NN ).
  356. *> \endverbatim
  357. *>
  358. *> \param[out] AP
  359. *> \verbatim
  360. *> AP is DOUBLE PRECISION array of
  361. *> dimension( max(NN)*max(NN+1)/2 )
  362. *> The matrix A stored in packed format.
  363. *> \endverbatim
  364. *>
  365. *> \param[out] SD
  366. *> \verbatim
  367. *> SD is DOUBLE PRECISION array of
  368. *> dimension( max(NN) )
  369. *> The diagonal of the tridiagonal matrix computed by DSYTRD.
  370. *> On exit, SD and SE contain the tridiagonal form of the
  371. *> matrix in A.
  372. *> \endverbatim
  373. *>
  374. *> \param[out] SE
  375. *> \verbatim
  376. *> SE is DOUBLE PRECISION array of
  377. *> dimension( max(NN) )
  378. *> The off-diagonal of the tridiagonal matrix computed by
  379. *> DSYTRD. On exit, SD and SE contain the tridiagonal form of
  380. *> the matrix in A.
  381. *> \endverbatim
  382. *>
  383. *> \param[out] D1
  384. *> \verbatim
  385. *> D1 is DOUBLE PRECISION array of
  386. *> dimension( max(NN) )
  387. *> The eigenvalues of A, as computed by DSTEQR simultaneously
  388. *> with Z. On exit, the eigenvalues in D1 correspond with the
  389. *> matrix in A.
  390. *> \endverbatim
  391. *>
  392. *> \param[out] D2
  393. *> \verbatim
  394. *> D2 is DOUBLE PRECISION array of
  395. *> dimension( max(NN) )
  396. *> The eigenvalues of A, as computed by DSTEQR if Z is not
  397. *> computed. On exit, the eigenvalues in D2 correspond with
  398. *> the matrix in A.
  399. *> \endverbatim
  400. *>
  401. *> \param[out] D3
  402. *> \verbatim
  403. *> D3 is DOUBLE PRECISION array of
  404. *> dimension( max(NN) )
  405. *> The eigenvalues of A, as computed by DSTERF. On exit, the
  406. *> eigenvalues in D3 correspond with the matrix in A.
  407. *> \endverbatim
  408. *>
  409. *> \param[out] D4
  410. *> \verbatim
  411. *> D4 is DOUBLE PRECISION array of
  412. *> dimension( max(NN) )
  413. *> The eigenvalues of A, as computed by DPTEQR(V).
  414. *> DPTEQR factors S as Z4 D4 Z4*
  415. *> On exit, the eigenvalues in D4 correspond with the matrix in A.
  416. *> \endverbatim
  417. *>
  418. *> \param[out] D5
  419. *> \verbatim
  420. *> D5 is DOUBLE PRECISION array of
  421. *> dimension( max(NN) )
  422. *> The eigenvalues of A, as computed by DPTEQR(N)
  423. *> when Z is not computed. On exit, the
  424. *> eigenvalues in D4 correspond with the matrix in A.
  425. *> \endverbatim
  426. *>
  427. *> \param[out] WA1
  428. *> \verbatim
  429. *> WA1 is DOUBLE PRECISION array of
  430. *> dimension( max(NN) )
  431. *> All eigenvalues of A, computed to high
  432. *> absolute accuracy, with different range options.
  433. *> as computed by DSTEBZ.
  434. *> \endverbatim
  435. *>
  436. *> \param[out] WA2
  437. *> \verbatim
  438. *> WA2 is DOUBLE PRECISION array of
  439. *> dimension( max(NN) )
  440. *> Selected eigenvalues of A, computed to high
  441. *> absolute accuracy, with different range options.
  442. *> as computed by DSTEBZ.
  443. *> Choose random values for IL and IU, and ask for the
  444. *> IL-th through IU-th eigenvalues.
  445. *> \endverbatim
  446. *>
  447. *> \param[out] WA3
  448. *> \verbatim
  449. *> WA3 is DOUBLE PRECISION array of
  450. *> dimension( max(NN) )
  451. *> Selected eigenvalues of A, computed to high
  452. *> absolute accuracy, with different range options.
  453. *> as computed by DSTEBZ.
  454. *> Determine the values VL and VU of the IL-th and IU-th
  455. *> eigenvalues and ask for all eigenvalues in this range.
  456. *> \endverbatim
  457. *>
  458. *> \param[out] WR
  459. *> \verbatim
  460. *> WR is DOUBLE PRECISION array of
  461. *> dimension( max(NN) )
  462. *> All eigenvalues of A, computed to high
  463. *> absolute accuracy, with different options.
  464. *> as computed by DSTEBZ.
  465. *> \endverbatim
  466. *>
  467. *> \param[out] U
  468. *> \verbatim
  469. *> U is DOUBLE PRECISION array of
  470. *> dimension( LDU, max(NN) ).
  471. *> The orthogonal matrix computed by DSYTRD + DORGTR.
  472. *> \endverbatim
  473. *>
  474. *> \param[in] LDU
  475. *> \verbatim
  476. *> LDU is INTEGER
  477. *> The leading dimension of U, Z, and V. It must be at least 1
  478. *> and at least max( NN ).
  479. *> \endverbatim
  480. *>
  481. *> \param[out] V
  482. *> \verbatim
  483. *> V is DOUBLE PRECISION array of
  484. *> dimension( LDU, max(NN) ).
  485. *> The Housholder vectors computed by DSYTRD in reducing A to
  486. *> tridiagonal form. The vectors computed with UPLO='U' are
  487. *> in the upper triangle, and the vectors computed with UPLO='L'
  488. *> are in the lower triangle. (As described in DSYTRD, the
  489. *> sub- and superdiagonal are not set to 1, although the
  490. *> true Householder vector has a 1 in that position. The
  491. *> routines that use V, such as DORGTR, set those entries to
  492. *> 1 before using them, and then restore them later.)
  493. *> \endverbatim
  494. *>
  495. *> \param[out] VP
  496. *> \verbatim
  497. *> VP is DOUBLE PRECISION array of
  498. *> dimension( max(NN)*max(NN+1)/2 )
  499. *> The matrix V stored in packed format.
  500. *> \endverbatim
  501. *>
  502. *> \param[out] TAU
  503. *> \verbatim
  504. *> TAU is DOUBLE PRECISION array of
  505. *> dimension( max(NN) )
  506. *> The Householder factors computed by DSYTRD in reducing A
  507. *> to tridiagonal form.
  508. *> \endverbatim
  509. *>
  510. *> \param[out] Z
  511. *> \verbatim
  512. *> Z is DOUBLE PRECISION array of
  513. *> dimension( LDU, max(NN) ).
  514. *> The orthogonal matrix of eigenvectors computed by DSTEQR,
  515. *> DPTEQR, and DSTEIN.
  516. *> \endverbatim
  517. *>
  518. *> \param[out] WORK
  519. *> \verbatim
  520. *> WORK is DOUBLE PRECISION array of
  521. *> dimension( LWORK )
  522. *> \endverbatim
  523. *>
  524. *> \param[in] LWORK
  525. *> \verbatim
  526. *> LWORK is INTEGER
  527. *> The number of entries in WORK. This must be at least
  528. *> 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 3 * Nmax**2
  529. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  530. *> \endverbatim
  531. *>
  532. *> \param[out] IWORK
  533. *> \verbatim
  534. *> IWORK is INTEGER array,
  535. *> Workspace.
  536. *> \endverbatim
  537. *>
  538. *> \param[out] LIWORK
  539. *> \verbatim
  540. *> LIWORK is INTEGER
  541. *> The number of entries in IWORK. This must be at least
  542. *> 6 + 6*Nmax + 5 * Nmax * lg Nmax
  543. *> where Nmax = max( NN(j), 2 ) and lg = log base 2.
  544. *> \endverbatim
  545. *>
  546. *> \param[out] RESULT
  547. *> \verbatim
  548. *> RESULT is DOUBLE PRECISION array, dimension (26)
  549. *> The values computed by the tests described above.
  550. *> The values are currently limited to 1/ulp, to avoid
  551. *> overflow.
  552. *> \endverbatim
  553. *>
  554. *> \param[out] INFO
  555. *> \verbatim
  556. *> INFO is INTEGER
  557. *> If 0, then everything ran OK.
  558. *> -1: NSIZES < 0
  559. *> -2: Some NN(j) < 0
  560. *> -3: NTYPES < 0
  561. *> -5: THRESH < 0
  562. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  563. *> -23: LDU < 1 or LDU < NMAX.
  564. *> -29: LWORK too small.
  565. *> If DLATMR, SLATMS, DSYTRD, DORGTR, DSTEQR, SSTERF,
  566. *> or DORMC2 returns an error code, the
  567. *> absolute value of it is returned.
  568. *>
  569. *>-----------------------------------------------------------------------
  570. *>
  571. *> Some Local Variables and Parameters:
  572. *> ---- ----- --------- --- ----------
  573. *> ZERO, ONE Real 0 and 1.
  574. *> MAXTYP The number of types defined.
  575. *> NTEST The number of tests performed, or which can
  576. *> be performed so far, for the current matrix.
  577. *> NTESTT The total number of tests performed so far.
  578. *> NBLOCK Blocksize as returned by ENVIR.
  579. *> NMAX Largest value in NN.
  580. *> NMATS The number of matrices generated so far.
  581. *> NERRS The number of tests which have exceeded THRESH
  582. *> so far.
  583. *> COND, IMODE Values to be passed to the matrix generators.
  584. *> ANORM Norm of A; passed to matrix generators.
  585. *>
  586. *> OVFL, UNFL Overflow and underflow thresholds.
  587. *> ULP, ULPINV Finest relative precision and its inverse.
  588. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  589. *> The following four arrays decode JTYPE:
  590. *> KTYPE(j) The general type (1-10) for type "j".
  591. *> KMODE(j) The MODE value to be passed to the matrix
  592. *> generator for type "j".
  593. *> KMAGN(j) The order of magnitude ( O(1),
  594. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  595. *> \endverbatim
  596. *
  597. * Authors:
  598. * ========
  599. *
  600. *> \author Univ. of Tennessee
  601. *> \author Univ. of California Berkeley
  602. *> \author Univ. of Colorado Denver
  603. *> \author NAG Ltd.
  604. *
  605. *> \ingroup double_eig
  606. *
  607. * =====================================================================
  608. SUBROUTINE DCHKST2STG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  609. $ NOUNIT, A, LDA, AP, SD, SE, D1, D2, D3, D4, D5,
  610. $ WA1, WA2, WA3, WR, U, LDU, V, VP, TAU, Z, WORK,
  611. $ LWORK, IWORK, LIWORK, RESULT, INFO )
  612. *
  613. * -- LAPACK test routine --
  614. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  615. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  616. *
  617. * .. Scalar Arguments ..
  618. INTEGER INFO, LDA, LDU, LIWORK, LWORK, NOUNIT, NSIZES,
  619. $ NTYPES
  620. DOUBLE PRECISION THRESH
  621. * ..
  622. * .. Array Arguments ..
  623. LOGICAL DOTYPE( * )
  624. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  625. DOUBLE PRECISION A( LDA, * ), AP( * ), D1( * ), D2( * ),
  626. $ D3( * ), D4( * ), D5( * ), RESULT( * ),
  627. $ SD( * ), SE( * ), TAU( * ), U( LDU, * ),
  628. $ V( LDU, * ), VP( * ), WA1( * ), WA2( * ),
  629. $ WA3( * ), WORK( * ), WR( * ), Z( LDU, * )
  630. * ..
  631. *
  632. * =====================================================================
  633. *
  634. * .. Parameters ..
  635. DOUBLE PRECISION ZERO, ONE, TWO, EIGHT, TEN, HUN
  636. PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
  637. $ EIGHT = 8.0D0, TEN = 10.0D0, HUN = 100.0D0 )
  638. DOUBLE PRECISION HALF
  639. PARAMETER ( HALF = ONE / TWO )
  640. INTEGER MAXTYP
  641. PARAMETER ( MAXTYP = 21 )
  642. LOGICAL SRANGE
  643. PARAMETER ( SRANGE = .FALSE. )
  644. LOGICAL SREL
  645. PARAMETER ( SREL = .FALSE. )
  646. * ..
  647. * .. Local Scalars ..
  648. LOGICAL BADNN, TRYRAC
  649. INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, J, JC,
  650. $ JR, JSIZE, JTYPE, LGN, LIWEDC, LOG2UI, LWEDC,
  651. $ M, M2, M3, MTYPES, N, NAP, NBLOCK, NERRS,
  652. $ NMATS, NMAX, NSPLIT, NTEST, NTESTT, LH, LW
  653. DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  654. $ RTUNFL, TEMP1, TEMP2, TEMP3, TEMP4, ULP,
  655. $ ULPINV, UNFL, VL, VU
  656. * ..
  657. * .. Local Arrays ..
  658. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  659. $ KMAGN( MAXTYP ), KMODE( MAXTYP ),
  660. $ KTYPE( MAXTYP )
  661. DOUBLE PRECISION DUMMA( 1 )
  662. * ..
  663. * .. External Functions ..
  664. INTEGER ILAENV
  665. DOUBLE PRECISION DLAMCH, DLARND, DSXT1
  666. EXTERNAL ILAENV, DLAMCH, DLARND, DSXT1
  667. * ..
  668. * .. External Subroutines ..
  669. EXTERNAL DCOPY, DLACPY, DLASET, DLASUM, DLATMR, DLATMS,
  670. $ DOPGTR, DORGTR, DPTEQR, DSPT21, DSPTRD, DSTEBZ,
  671. $ DSTECH, DSTEDC, DSTEMR, DSTEIN, DSTEQR, DSTERF,
  672. $ DSTT21, DSTT22, DSYT21, DSYTRD, XERBLA,
  673. $ DSYTRD_2STAGE
  674. * ..
  675. * .. Intrinsic Functions ..
  676. INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
  677. * ..
  678. * .. Data statements ..
  679. DATA KTYPE / 1, 2, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 8,
  680. $ 8, 8, 9, 9, 9, 9, 9, 10 /
  681. DATA KMAGN / 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  682. $ 2, 3, 1, 1, 1, 2, 3, 1 /
  683. DATA KMODE / 0, 0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  684. $ 0, 0, 4, 3, 1, 4, 4, 3 /
  685. * ..
  686. * .. Executable Statements ..
  687. *
  688. * Keep ftnchek happy
  689. IDUMMA( 1 ) = 1
  690. *
  691. * Check for errors
  692. *
  693. NTESTT = 0
  694. INFO = 0
  695. *
  696. * Important constants
  697. *
  698. BADNN = .FALSE.
  699. TRYRAC = .TRUE.
  700. NMAX = 1
  701. DO 10 J = 1, NSIZES
  702. NMAX = MAX( NMAX, NN( J ) )
  703. IF( NN( J ).LT.0 )
  704. $ BADNN = .TRUE.
  705. 10 CONTINUE
  706. *
  707. NBLOCK = ILAENV( 1, 'DSYTRD', 'L', NMAX, -1, -1, -1 )
  708. NBLOCK = MIN( NMAX, MAX( 1, NBLOCK ) )
  709. *
  710. * Check for errors
  711. *
  712. IF( NSIZES.LT.0 ) THEN
  713. INFO = -1
  714. ELSE IF( BADNN ) THEN
  715. INFO = -2
  716. ELSE IF( NTYPES.LT.0 ) THEN
  717. INFO = -3
  718. ELSE IF( LDA.LT.NMAX ) THEN
  719. INFO = -9
  720. ELSE IF( LDU.LT.NMAX ) THEN
  721. INFO = -23
  722. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  723. INFO = -29
  724. END IF
  725. *
  726. IF( INFO.NE.0 ) THEN
  727. CALL XERBLA( 'DCHKST2STG', -INFO )
  728. RETURN
  729. END IF
  730. *
  731. * Quick return if possible
  732. *
  733. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  734. $ RETURN
  735. *
  736. * More Important constants
  737. *
  738. UNFL = DLAMCH( 'Safe minimum' )
  739. OVFL = ONE / UNFL
  740. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  741. ULPINV = ONE / ULP
  742. LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
  743. RTUNFL = SQRT( UNFL )
  744. RTOVFL = SQRT( OVFL )
  745. *
  746. * Loop over sizes, types
  747. *
  748. DO 20 I = 1, 4
  749. ISEED2( I ) = ISEED( I )
  750. 20 CONTINUE
  751. NERRS = 0
  752. NMATS = 0
  753. *
  754. DO 310 JSIZE = 1, NSIZES
  755. N = NN( JSIZE )
  756. IF( N.GT.0 ) THEN
  757. LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
  758. IF( 2**LGN.LT.N )
  759. $ LGN = LGN + 1
  760. IF( 2**LGN.LT.N )
  761. $ LGN = LGN + 1
  762. LWEDC = 1 + 4*N + 2*N*LGN + 4*N**2
  763. LIWEDC = 6 + 6*N + 5*N*LGN
  764. ELSE
  765. LWEDC = 8
  766. LIWEDC = 12
  767. END IF
  768. NAP = ( N*( N+1 ) ) / 2
  769. ANINV = ONE / DBLE( MAX( 1, N ) )
  770. *
  771. IF( NSIZES.NE.1 ) THEN
  772. MTYPES = MIN( MAXTYP, NTYPES )
  773. ELSE
  774. MTYPES = MIN( MAXTYP+1, NTYPES )
  775. END IF
  776. *
  777. DO 300 JTYPE = 1, MTYPES
  778. IF( .NOT.DOTYPE( JTYPE ) )
  779. $ GO TO 300
  780. NMATS = NMATS + 1
  781. NTEST = 0
  782. *
  783. DO 30 J = 1, 4
  784. IOLDSD( J ) = ISEED( J )
  785. 30 CONTINUE
  786. *
  787. * Compute "A"
  788. *
  789. * Control parameters:
  790. *
  791. * KMAGN KMODE KTYPE
  792. * =1 O(1) clustered 1 zero
  793. * =2 large clustered 2 identity
  794. * =3 small exponential (none)
  795. * =4 arithmetic diagonal, (w/ eigenvalues)
  796. * =5 random log symmetric, w/ eigenvalues
  797. * =6 random (none)
  798. * =7 random diagonal
  799. * =8 random symmetric
  800. * =9 positive definite
  801. * =10 diagonally dominant tridiagonal
  802. *
  803. IF( MTYPES.GT.MAXTYP )
  804. $ GO TO 100
  805. *
  806. ITYPE = KTYPE( JTYPE )
  807. IMODE = KMODE( JTYPE )
  808. *
  809. * Compute norm
  810. *
  811. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  812. *
  813. 40 CONTINUE
  814. ANORM = ONE
  815. GO TO 70
  816. *
  817. 50 CONTINUE
  818. ANORM = ( RTOVFL*ULP )*ANINV
  819. GO TO 70
  820. *
  821. 60 CONTINUE
  822. ANORM = RTUNFL*N*ULPINV
  823. GO TO 70
  824. *
  825. 70 CONTINUE
  826. *
  827. CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
  828. IINFO = 0
  829. IF( JTYPE.LE.15 ) THEN
  830. COND = ULPINV
  831. ELSE
  832. COND = ULPINV*ANINV / TEN
  833. END IF
  834. *
  835. * Special Matrices -- Identity & Jordan block
  836. *
  837. * Zero
  838. *
  839. IF( ITYPE.EQ.1 ) THEN
  840. IINFO = 0
  841. *
  842. ELSE IF( ITYPE.EQ.2 ) THEN
  843. *
  844. * Identity
  845. *
  846. DO 80 JC = 1, N
  847. A( JC, JC ) = ANORM
  848. 80 CONTINUE
  849. *
  850. ELSE IF( ITYPE.EQ.4 ) THEN
  851. *
  852. * Diagonal Matrix, [Eigen]values Specified
  853. *
  854. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  855. $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ),
  856. $ IINFO )
  857. *
  858. *
  859. ELSE IF( ITYPE.EQ.5 ) THEN
  860. *
  861. * Symmetric, eigenvalues specified
  862. *
  863. CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND,
  864. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  865. $ IINFO )
  866. *
  867. ELSE IF( ITYPE.EQ.7 ) THEN
  868. *
  869. * Diagonal, random eigenvalues
  870. *
  871. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  872. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  873. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  874. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  875. *
  876. ELSE IF( ITYPE.EQ.8 ) THEN
  877. *
  878. * Symmetric, random eigenvalues
  879. *
  880. CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE,
  881. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  882. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  883. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  884. *
  885. ELSE IF( ITYPE.EQ.9 ) THEN
  886. *
  887. * Positive definite, eigenvalues specified.
  888. *
  889. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  890. $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ),
  891. $ IINFO )
  892. *
  893. ELSE IF( ITYPE.EQ.10 ) THEN
  894. *
  895. * Positive definite tridiagonal, eigenvalues specified.
  896. *
  897. CALL DLATMS( N, N, 'S', ISEED, 'P', WORK, IMODE, COND,
  898. $ ANORM, 1, 1, 'N', A, LDA, WORK( N+1 ),
  899. $ IINFO )
  900. DO 90 I = 2, N
  901. TEMP1 = ABS( A( I-1, I ) ) /
  902. $ SQRT( ABS( A( I-1, I-1 )*A( I, I ) ) )
  903. IF( TEMP1.GT.HALF ) THEN
  904. A( I-1, I ) = HALF*SQRT( ABS( A( I-1, I-1 )*A( I,
  905. $ I ) ) )
  906. A( I, I-1 ) = A( I-1, I )
  907. END IF
  908. 90 CONTINUE
  909. *
  910. ELSE
  911. *
  912. IINFO = 1
  913. END IF
  914. *
  915. IF( IINFO.NE.0 ) THEN
  916. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  917. $ IOLDSD
  918. INFO = ABS( IINFO )
  919. RETURN
  920. END IF
  921. *
  922. 100 CONTINUE
  923. *
  924. * Call DSYTRD and DORGTR to compute S and U from
  925. * upper triangle.
  926. *
  927. CALL DLACPY( 'U', N, N, A, LDA, V, LDU )
  928. *
  929. NTEST = 1
  930. CALL DSYTRD( 'U', N, V, LDU, SD, SE, TAU, WORK, LWORK,
  931. $ IINFO )
  932. *
  933. IF( IINFO.NE.0 ) THEN
  934. WRITE( NOUNIT, FMT = 9999 )'DSYTRD(U)', IINFO, N, JTYPE,
  935. $ IOLDSD
  936. INFO = ABS( IINFO )
  937. IF( IINFO.LT.0 ) THEN
  938. RETURN
  939. ELSE
  940. RESULT( 1 ) = ULPINV
  941. GO TO 280
  942. END IF
  943. END IF
  944. *
  945. CALL DLACPY( 'U', N, N, V, LDU, U, LDU )
  946. *
  947. NTEST = 2
  948. CALL DORGTR( 'U', N, U, LDU, TAU, WORK, LWORK, IINFO )
  949. IF( IINFO.NE.0 ) THEN
  950. WRITE( NOUNIT, FMT = 9999 )'DORGTR(U)', IINFO, N, JTYPE,
  951. $ IOLDSD
  952. INFO = ABS( IINFO )
  953. IF( IINFO.LT.0 ) THEN
  954. RETURN
  955. ELSE
  956. RESULT( 2 ) = ULPINV
  957. GO TO 280
  958. END IF
  959. END IF
  960. *
  961. * Do tests 1 and 2
  962. *
  963. CALL DSYT21( 2, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  964. $ LDU, TAU, WORK, RESULT( 1 ) )
  965. CALL DSYT21( 3, 'Upper', N, 1, A, LDA, SD, SE, U, LDU, V,
  966. $ LDU, TAU, WORK, RESULT( 2 ) )
  967. *
  968. * Compute D1 the eigenvalues resulting from the tridiagonal
  969. * form using the standard 1-stage algorithm and use it as a
  970. * reference to compare with the 2-stage technique
  971. *
  972. * Compute D1 from the 1-stage and used as reference for the
  973. * 2-stage
  974. *
  975. CALL DCOPY( N, SD, 1, D1, 1 )
  976. IF( N.GT.0 )
  977. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  978. *
  979. CALL DSTEQR( 'N', N, D1, WORK, WORK( N+1 ), LDU,
  980. $ WORK( N+1 ), IINFO )
  981. IF( IINFO.NE.0 ) THEN
  982. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
  983. $ IOLDSD
  984. INFO = ABS( IINFO )
  985. IF( IINFO.LT.0 ) THEN
  986. RETURN
  987. ELSE
  988. RESULT( 3 ) = ULPINV
  989. GO TO 280
  990. END IF
  991. END IF
  992. *
  993. * 2-STAGE TRD Upper case is used to compute D2.
  994. * Note to set SD and SE to zero to be sure not reusing
  995. * the one from above. Compare it with D1 computed
  996. * using the 1-stage.
  997. *
  998. CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
  999. CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
  1000. CALL DLACPY( "U", N, N, A, LDA, V, LDU )
  1001. LH = MAX(1, 4*N)
  1002. LW = LWORK - LH
  1003. CALL DSYTRD_2STAGE( 'N', "U", N, V, LDU, SD, SE, TAU,
  1004. $ WORK, LH, WORK( LH+1 ), LW, IINFO )
  1005. *
  1006. * Compute D2 from the 2-stage Upper case
  1007. *
  1008. CALL DCOPY( N, SD, 1, D2, 1 )
  1009. IF( N.GT.0 )
  1010. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1011. *
  1012. CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
  1013. $ WORK( N+1 ), IINFO )
  1014. IF( IINFO.NE.0 ) THEN
  1015. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
  1016. $ IOLDSD
  1017. INFO = ABS( IINFO )
  1018. IF( IINFO.LT.0 ) THEN
  1019. RETURN
  1020. ELSE
  1021. RESULT( 3 ) = ULPINV
  1022. GO TO 280
  1023. END IF
  1024. END IF
  1025. *
  1026. * 2-STAGE TRD Lower case is used to compute D3.
  1027. * Note to set SD and SE to zero to be sure not reusing
  1028. * the one from above. Compare it with D1 computed
  1029. * using the 1-stage.
  1030. *
  1031. CALL DLASET( 'Full', N, 1, ZERO, ZERO, SD, N )
  1032. CALL DLASET( 'Full', N, 1, ZERO, ZERO, SE, N )
  1033. CALL DLACPY( "L", N, N, A, LDA, V, LDU )
  1034. CALL DSYTRD_2STAGE( 'N', "L", N, V, LDU, SD, SE, TAU,
  1035. $ WORK, LH, WORK( LH+1 ), LW, IINFO )
  1036. *
  1037. * Compute D3 from the 2-stage Upper case
  1038. *
  1039. CALL DCOPY( N, SD, 1, D3, 1 )
  1040. IF( N.GT.0 )
  1041. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1042. *
  1043. CALL DSTEQR( 'N', N, D3, WORK, WORK( N+1 ), LDU,
  1044. $ WORK( N+1 ), IINFO )
  1045. IF( IINFO.NE.0 ) THEN
  1046. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
  1047. $ IOLDSD
  1048. INFO = ABS( IINFO )
  1049. IF( IINFO.LT.0 ) THEN
  1050. RETURN
  1051. ELSE
  1052. RESULT( 4 ) = ULPINV
  1053. GO TO 280
  1054. END IF
  1055. END IF
  1056. *
  1057. * Do Tests 3 and 4 which are similar to 11 and 12 but with the
  1058. * D1 computed using the standard 1-stage reduction as reference
  1059. *
  1060. NTEST = 4
  1061. TEMP1 = ZERO
  1062. TEMP2 = ZERO
  1063. TEMP3 = ZERO
  1064. TEMP4 = ZERO
  1065. *
  1066. DO 151 J = 1, N
  1067. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1068. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1069. TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
  1070. TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  1071. 151 CONTINUE
  1072. *
  1073. RESULT( 3 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1074. RESULT( 4 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
  1075. *
  1076. * Store the upper triangle of A in AP
  1077. *
  1078. I = 0
  1079. DO 120 JC = 1, N
  1080. DO 110 JR = 1, JC
  1081. I = I + 1
  1082. AP( I ) = A( JR, JC )
  1083. 110 CONTINUE
  1084. 120 CONTINUE
  1085. *
  1086. * Call DSPTRD and DOPGTR to compute S and U from AP
  1087. *
  1088. CALL DCOPY( NAP, AP, 1, VP, 1 )
  1089. *
  1090. NTEST = 5
  1091. CALL DSPTRD( 'U', N, VP, SD, SE, TAU, IINFO )
  1092. *
  1093. IF( IINFO.NE.0 ) THEN
  1094. WRITE( NOUNIT, FMT = 9999 )'DSPTRD(U)', IINFO, N, JTYPE,
  1095. $ IOLDSD
  1096. INFO = ABS( IINFO )
  1097. IF( IINFO.LT.0 ) THEN
  1098. RETURN
  1099. ELSE
  1100. RESULT( 5 ) = ULPINV
  1101. GO TO 280
  1102. END IF
  1103. END IF
  1104. *
  1105. NTEST = 6
  1106. CALL DOPGTR( 'U', N, VP, TAU, U, LDU, WORK, IINFO )
  1107. IF( IINFO.NE.0 ) THEN
  1108. WRITE( NOUNIT, FMT = 9999 )'DOPGTR(U)', IINFO, N, JTYPE,
  1109. $ IOLDSD
  1110. INFO = ABS( IINFO )
  1111. IF( IINFO.LT.0 ) THEN
  1112. RETURN
  1113. ELSE
  1114. RESULT( 6 ) = ULPINV
  1115. GO TO 280
  1116. END IF
  1117. END IF
  1118. *
  1119. * Do tests 5 and 6
  1120. *
  1121. CALL DSPT21( 2, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1122. $ WORK, RESULT( 5 ) )
  1123. CALL DSPT21( 3, 'Upper', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1124. $ WORK, RESULT( 6 ) )
  1125. *
  1126. * Store the lower triangle of A in AP
  1127. *
  1128. I = 0
  1129. DO 140 JC = 1, N
  1130. DO 130 JR = JC, N
  1131. I = I + 1
  1132. AP( I ) = A( JR, JC )
  1133. 130 CONTINUE
  1134. 140 CONTINUE
  1135. *
  1136. * Call DSPTRD and DOPGTR to compute S and U from AP
  1137. *
  1138. CALL DCOPY( NAP, AP, 1, VP, 1 )
  1139. *
  1140. NTEST = 7
  1141. CALL DSPTRD( 'L', N, VP, SD, SE, TAU, IINFO )
  1142. *
  1143. IF( IINFO.NE.0 ) THEN
  1144. WRITE( NOUNIT, FMT = 9999 )'DSPTRD(L)', IINFO, N, JTYPE,
  1145. $ IOLDSD
  1146. INFO = ABS( IINFO )
  1147. IF( IINFO.LT.0 ) THEN
  1148. RETURN
  1149. ELSE
  1150. RESULT( 7 ) = ULPINV
  1151. GO TO 280
  1152. END IF
  1153. END IF
  1154. *
  1155. NTEST = 8
  1156. CALL DOPGTR( 'L', N, VP, TAU, U, LDU, WORK, IINFO )
  1157. IF( IINFO.NE.0 ) THEN
  1158. WRITE( NOUNIT, FMT = 9999 )'DOPGTR(L)', IINFO, N, JTYPE,
  1159. $ IOLDSD
  1160. INFO = ABS( IINFO )
  1161. IF( IINFO.LT.0 ) THEN
  1162. RETURN
  1163. ELSE
  1164. RESULT( 8 ) = ULPINV
  1165. GO TO 280
  1166. END IF
  1167. END IF
  1168. *
  1169. CALL DSPT21( 2, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1170. $ WORK, RESULT( 7 ) )
  1171. CALL DSPT21( 3, 'Lower', N, 1, AP, SD, SE, U, LDU, VP, TAU,
  1172. $ WORK, RESULT( 8 ) )
  1173. *
  1174. * Call DSTEQR to compute D1, D2, and Z, do tests.
  1175. *
  1176. * Compute D1 and Z
  1177. *
  1178. CALL DCOPY( N, SD, 1, D1, 1 )
  1179. IF( N.GT.0 )
  1180. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1181. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1182. *
  1183. NTEST = 9
  1184. CALL DSTEQR( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), IINFO )
  1185. IF( IINFO.NE.0 ) THEN
  1186. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(V)', IINFO, N, JTYPE,
  1187. $ IOLDSD
  1188. INFO = ABS( IINFO )
  1189. IF( IINFO.LT.0 ) THEN
  1190. RETURN
  1191. ELSE
  1192. RESULT( 9 ) = ULPINV
  1193. GO TO 280
  1194. END IF
  1195. END IF
  1196. *
  1197. * Compute D2
  1198. *
  1199. CALL DCOPY( N, SD, 1, D2, 1 )
  1200. IF( N.GT.0 )
  1201. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1202. *
  1203. NTEST = 11
  1204. CALL DSTEQR( 'N', N, D2, WORK, WORK( N+1 ), LDU,
  1205. $ WORK( N+1 ), IINFO )
  1206. IF( IINFO.NE.0 ) THEN
  1207. WRITE( NOUNIT, FMT = 9999 )'DSTEQR(N)', IINFO, N, JTYPE,
  1208. $ IOLDSD
  1209. INFO = ABS( IINFO )
  1210. IF( IINFO.LT.0 ) THEN
  1211. RETURN
  1212. ELSE
  1213. RESULT( 11 ) = ULPINV
  1214. GO TO 280
  1215. END IF
  1216. END IF
  1217. *
  1218. * Compute D3 (using PWK method)
  1219. *
  1220. CALL DCOPY( N, SD, 1, D3, 1 )
  1221. IF( N.GT.0 )
  1222. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1223. *
  1224. NTEST = 12
  1225. CALL DSTERF( N, D3, WORK, IINFO )
  1226. IF( IINFO.NE.0 ) THEN
  1227. WRITE( NOUNIT, FMT = 9999 )'DSTERF', IINFO, N, JTYPE,
  1228. $ IOLDSD
  1229. INFO = ABS( IINFO )
  1230. IF( IINFO.LT.0 ) THEN
  1231. RETURN
  1232. ELSE
  1233. RESULT( 12 ) = ULPINV
  1234. GO TO 280
  1235. END IF
  1236. END IF
  1237. *
  1238. * Do Tests 9 and 10
  1239. *
  1240. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1241. $ RESULT( 9 ) )
  1242. *
  1243. * Do Tests 11 and 12
  1244. *
  1245. TEMP1 = ZERO
  1246. TEMP2 = ZERO
  1247. TEMP3 = ZERO
  1248. TEMP4 = ZERO
  1249. *
  1250. DO 150 J = 1, N
  1251. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1252. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1253. TEMP3 = MAX( TEMP3, ABS( D1( J ) ), ABS( D3( J ) ) )
  1254. TEMP4 = MAX( TEMP4, ABS( D1( J )-D3( J ) ) )
  1255. 150 CONTINUE
  1256. *
  1257. RESULT( 11 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1258. RESULT( 12 ) = TEMP4 / MAX( UNFL, ULP*MAX( TEMP3, TEMP4 ) )
  1259. *
  1260. * Do Test 13 -- Sturm Sequence Test of Eigenvalues
  1261. * Go up by factors of two until it succeeds
  1262. *
  1263. NTEST = 13
  1264. TEMP1 = THRESH*( HALF-ULP )
  1265. *
  1266. DO 160 J = 0, LOG2UI
  1267. CALL DSTECH( N, SD, SE, D1, TEMP1, WORK, IINFO )
  1268. IF( IINFO.EQ.0 )
  1269. $ GO TO 170
  1270. TEMP1 = TEMP1*TWO
  1271. 160 CONTINUE
  1272. *
  1273. 170 CONTINUE
  1274. RESULT( 13 ) = TEMP1
  1275. *
  1276. * For positive definite matrices ( JTYPE.GT.15 ) call DPTEQR
  1277. * and do tests 14, 15, and 16 .
  1278. *
  1279. IF( JTYPE.GT.15 ) THEN
  1280. *
  1281. * Compute D4 and Z4
  1282. *
  1283. CALL DCOPY( N, SD, 1, D4, 1 )
  1284. IF( N.GT.0 )
  1285. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1286. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1287. *
  1288. NTEST = 14
  1289. CALL DPTEQR( 'V', N, D4, WORK, Z, LDU, WORK( N+1 ),
  1290. $ IINFO )
  1291. IF( IINFO.NE.0 ) THEN
  1292. WRITE( NOUNIT, FMT = 9999 )'DPTEQR(V)', IINFO, N,
  1293. $ JTYPE, IOLDSD
  1294. INFO = ABS( IINFO )
  1295. IF( IINFO.LT.0 ) THEN
  1296. RETURN
  1297. ELSE
  1298. RESULT( 14 ) = ULPINV
  1299. GO TO 280
  1300. END IF
  1301. END IF
  1302. *
  1303. * Do Tests 14 and 15
  1304. *
  1305. CALL DSTT21( N, 0, SD, SE, D4, DUMMA, Z, LDU, WORK,
  1306. $ RESULT( 14 ) )
  1307. *
  1308. * Compute D5
  1309. *
  1310. CALL DCOPY( N, SD, 1, D5, 1 )
  1311. IF( N.GT.0 )
  1312. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1313. *
  1314. NTEST = 16
  1315. CALL DPTEQR( 'N', N, D5, WORK, Z, LDU, WORK( N+1 ),
  1316. $ IINFO )
  1317. IF( IINFO.NE.0 ) THEN
  1318. WRITE( NOUNIT, FMT = 9999 )'DPTEQR(N)', IINFO, N,
  1319. $ JTYPE, IOLDSD
  1320. INFO = ABS( IINFO )
  1321. IF( IINFO.LT.0 ) THEN
  1322. RETURN
  1323. ELSE
  1324. RESULT( 16 ) = ULPINV
  1325. GO TO 280
  1326. END IF
  1327. END IF
  1328. *
  1329. * Do Test 16
  1330. *
  1331. TEMP1 = ZERO
  1332. TEMP2 = ZERO
  1333. DO 180 J = 1, N
  1334. TEMP1 = MAX( TEMP1, ABS( D4( J ) ), ABS( D5( J ) ) )
  1335. TEMP2 = MAX( TEMP2, ABS( D4( J )-D5( J ) ) )
  1336. 180 CONTINUE
  1337. *
  1338. RESULT( 16 ) = TEMP2 / MAX( UNFL,
  1339. $ HUN*ULP*MAX( TEMP1, TEMP2 ) )
  1340. ELSE
  1341. RESULT( 14 ) = ZERO
  1342. RESULT( 15 ) = ZERO
  1343. RESULT( 16 ) = ZERO
  1344. END IF
  1345. *
  1346. * Call DSTEBZ with different options and do tests 17-18.
  1347. *
  1348. * If S is positive definite and diagonally dominant,
  1349. * ask for all eigenvalues with high relative accuracy.
  1350. *
  1351. VL = ZERO
  1352. VU = ZERO
  1353. IL = 0
  1354. IU = 0
  1355. IF( JTYPE.EQ.21 ) THEN
  1356. NTEST = 17
  1357. ABSTOL = UNFL + UNFL
  1358. CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1359. $ M, NSPLIT, WR, IWORK( 1 ), IWORK( N+1 ),
  1360. $ WORK, IWORK( 2*N+1 ), IINFO )
  1361. IF( IINFO.NE.0 ) THEN
  1362. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,rel)', IINFO, N,
  1363. $ JTYPE, IOLDSD
  1364. INFO = ABS( IINFO )
  1365. IF( IINFO.LT.0 ) THEN
  1366. RETURN
  1367. ELSE
  1368. RESULT( 17 ) = ULPINV
  1369. GO TO 280
  1370. END IF
  1371. END IF
  1372. *
  1373. * Do test 17
  1374. *
  1375. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1376. $ ( ONE-HALF )**4
  1377. *
  1378. TEMP1 = ZERO
  1379. DO 190 J = 1, N
  1380. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1381. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1382. 190 CONTINUE
  1383. *
  1384. RESULT( 17 ) = TEMP1 / TEMP2
  1385. ELSE
  1386. RESULT( 17 ) = ZERO
  1387. END IF
  1388. *
  1389. * Now ask for all eigenvalues with high absolute accuracy.
  1390. *
  1391. NTEST = 18
  1392. ABSTOL = UNFL + UNFL
  1393. CALL DSTEBZ( 'A', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1394. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
  1395. $ IWORK( 2*N+1 ), IINFO )
  1396. IF( IINFO.NE.0 ) THEN
  1397. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A)', IINFO, N, JTYPE,
  1398. $ IOLDSD
  1399. INFO = ABS( IINFO )
  1400. IF( IINFO.LT.0 ) THEN
  1401. RETURN
  1402. ELSE
  1403. RESULT( 18 ) = ULPINV
  1404. GO TO 280
  1405. END IF
  1406. END IF
  1407. *
  1408. * Do test 18
  1409. *
  1410. TEMP1 = ZERO
  1411. TEMP2 = ZERO
  1412. DO 200 J = 1, N
  1413. TEMP1 = MAX( TEMP1, ABS( D3( J ) ), ABS( WA1( J ) ) )
  1414. TEMP2 = MAX( TEMP2, ABS( D3( J )-WA1( J ) ) )
  1415. 200 CONTINUE
  1416. *
  1417. RESULT( 18 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1418. *
  1419. * Choose random values for IL and IU, and ask for the
  1420. * IL-th through IU-th eigenvalues.
  1421. *
  1422. NTEST = 19
  1423. IF( N.LE.1 ) THEN
  1424. IL = 1
  1425. IU = N
  1426. ELSE
  1427. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1428. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1429. IF( IU.LT.IL ) THEN
  1430. ITEMP = IU
  1431. IU = IL
  1432. IL = ITEMP
  1433. END IF
  1434. END IF
  1435. *
  1436. CALL DSTEBZ( 'I', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1437. $ M2, NSPLIT, WA2, IWORK( 1 ), IWORK( N+1 ),
  1438. $ WORK, IWORK( 2*N+1 ), IINFO )
  1439. IF( IINFO.NE.0 ) THEN
  1440. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(I)', IINFO, N, JTYPE,
  1441. $ IOLDSD
  1442. INFO = ABS( IINFO )
  1443. IF( IINFO.LT.0 ) THEN
  1444. RETURN
  1445. ELSE
  1446. RESULT( 19 ) = ULPINV
  1447. GO TO 280
  1448. END IF
  1449. END IF
  1450. *
  1451. * Determine the values VL and VU of the IL-th and IU-th
  1452. * eigenvalues and ask for all eigenvalues in this range.
  1453. *
  1454. IF( N.GT.0 ) THEN
  1455. IF( IL.NE.1 ) THEN
  1456. VL = WA1( IL ) - MAX( HALF*( WA1( IL )-WA1( IL-1 ) ),
  1457. $ ULP*ANORM, TWO*RTUNFL )
  1458. ELSE
  1459. VL = WA1( 1 ) - MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1460. $ ULP*ANORM, TWO*RTUNFL )
  1461. END IF
  1462. IF( IU.NE.N ) THEN
  1463. VU = WA1( IU ) + MAX( HALF*( WA1( IU+1 )-WA1( IU ) ),
  1464. $ ULP*ANORM, TWO*RTUNFL )
  1465. ELSE
  1466. VU = WA1( N ) + MAX( HALF*( WA1( N )-WA1( 1 ) ),
  1467. $ ULP*ANORM, TWO*RTUNFL )
  1468. END IF
  1469. ELSE
  1470. VL = ZERO
  1471. VU = ONE
  1472. END IF
  1473. *
  1474. CALL DSTEBZ( 'V', 'E', N, VL, VU, IL, IU, ABSTOL, SD, SE,
  1475. $ M3, NSPLIT, WA3, IWORK( 1 ), IWORK( N+1 ),
  1476. $ WORK, IWORK( 2*N+1 ), IINFO )
  1477. IF( IINFO.NE.0 ) THEN
  1478. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(V)', IINFO, N, JTYPE,
  1479. $ IOLDSD
  1480. INFO = ABS( IINFO )
  1481. IF( IINFO.LT.0 ) THEN
  1482. RETURN
  1483. ELSE
  1484. RESULT( 19 ) = ULPINV
  1485. GO TO 280
  1486. END IF
  1487. END IF
  1488. *
  1489. IF( M3.EQ.0 .AND. N.NE.0 ) THEN
  1490. RESULT( 19 ) = ULPINV
  1491. GO TO 280
  1492. END IF
  1493. *
  1494. * Do test 19
  1495. *
  1496. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1497. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1498. IF( N.GT.0 ) THEN
  1499. TEMP3 = MAX( ABS( WA1( N ) ), ABS( WA1( 1 ) ) )
  1500. ELSE
  1501. TEMP3 = ZERO
  1502. END IF
  1503. *
  1504. RESULT( 19 ) = ( TEMP1+TEMP2 ) / MAX( UNFL, TEMP3*ULP )
  1505. *
  1506. * Call DSTEIN to compute eigenvectors corresponding to
  1507. * eigenvalues in WA1. (First call DSTEBZ again, to make sure
  1508. * it returns these eigenvalues in the correct order.)
  1509. *
  1510. NTEST = 21
  1511. CALL DSTEBZ( 'A', 'B', N, VL, VU, IL, IU, ABSTOL, SD, SE, M,
  1512. $ NSPLIT, WA1, IWORK( 1 ), IWORK( N+1 ), WORK,
  1513. $ IWORK( 2*N+1 ), IINFO )
  1514. IF( IINFO.NE.0 ) THEN
  1515. WRITE( NOUNIT, FMT = 9999 )'DSTEBZ(A,B)', IINFO, N,
  1516. $ JTYPE, IOLDSD
  1517. INFO = ABS( IINFO )
  1518. IF( IINFO.LT.0 ) THEN
  1519. RETURN
  1520. ELSE
  1521. RESULT( 20 ) = ULPINV
  1522. RESULT( 21 ) = ULPINV
  1523. GO TO 280
  1524. END IF
  1525. END IF
  1526. *
  1527. CALL DSTEIN( N, SD, SE, M, WA1, IWORK( 1 ), IWORK( N+1 ), Z,
  1528. $ LDU, WORK, IWORK( 2*N+1 ), IWORK( 3*N+1 ),
  1529. $ IINFO )
  1530. IF( IINFO.NE.0 ) THEN
  1531. WRITE( NOUNIT, FMT = 9999 )'DSTEIN', IINFO, N, JTYPE,
  1532. $ IOLDSD
  1533. INFO = ABS( IINFO )
  1534. IF( IINFO.LT.0 ) THEN
  1535. RETURN
  1536. ELSE
  1537. RESULT( 20 ) = ULPINV
  1538. RESULT( 21 ) = ULPINV
  1539. GO TO 280
  1540. END IF
  1541. END IF
  1542. *
  1543. * Do tests 20 and 21
  1544. *
  1545. CALL DSTT21( N, 0, SD, SE, WA1, DUMMA, Z, LDU, WORK,
  1546. $ RESULT( 20 ) )
  1547. *
  1548. * Call DSTEDC(I) to compute D1 and Z, do tests.
  1549. *
  1550. * Compute D1 and Z
  1551. *
  1552. CALL DCOPY( N, SD, 1, D1, 1 )
  1553. IF( N.GT.0 )
  1554. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1555. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1556. *
  1557. NTEST = 22
  1558. CALL DSTEDC( 'I', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1559. $ IWORK, LIWEDC, IINFO )
  1560. IF( IINFO.NE.0 ) THEN
  1561. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(I)', IINFO, N, JTYPE,
  1562. $ IOLDSD
  1563. INFO = ABS( IINFO )
  1564. IF( IINFO.LT.0 ) THEN
  1565. RETURN
  1566. ELSE
  1567. RESULT( 22 ) = ULPINV
  1568. GO TO 280
  1569. END IF
  1570. END IF
  1571. *
  1572. * Do Tests 22 and 23
  1573. *
  1574. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1575. $ RESULT( 22 ) )
  1576. *
  1577. * Call DSTEDC(V) to compute D1 and Z, do tests.
  1578. *
  1579. * Compute D1 and Z
  1580. *
  1581. CALL DCOPY( N, SD, 1, D1, 1 )
  1582. IF( N.GT.0 )
  1583. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1584. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1585. *
  1586. NTEST = 24
  1587. CALL DSTEDC( 'V', N, D1, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1588. $ IWORK, LIWEDC, IINFO )
  1589. IF( IINFO.NE.0 ) THEN
  1590. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(V)', IINFO, N, JTYPE,
  1591. $ IOLDSD
  1592. INFO = ABS( IINFO )
  1593. IF( IINFO.LT.0 ) THEN
  1594. RETURN
  1595. ELSE
  1596. RESULT( 24 ) = ULPINV
  1597. GO TO 280
  1598. END IF
  1599. END IF
  1600. *
  1601. * Do Tests 24 and 25
  1602. *
  1603. CALL DSTT21( N, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1604. $ RESULT( 24 ) )
  1605. *
  1606. * Call DSTEDC(N) to compute D2, do tests.
  1607. *
  1608. * Compute D2
  1609. *
  1610. CALL DCOPY( N, SD, 1, D2, 1 )
  1611. IF( N.GT.0 )
  1612. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1613. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1614. *
  1615. NTEST = 26
  1616. CALL DSTEDC( 'N', N, D2, WORK, Z, LDU, WORK( N+1 ), LWEDC-N,
  1617. $ IWORK, LIWEDC, IINFO )
  1618. IF( IINFO.NE.0 ) THEN
  1619. WRITE( NOUNIT, FMT = 9999 )'DSTEDC(N)', IINFO, N, JTYPE,
  1620. $ IOLDSD
  1621. INFO = ABS( IINFO )
  1622. IF( IINFO.LT.0 ) THEN
  1623. RETURN
  1624. ELSE
  1625. RESULT( 26 ) = ULPINV
  1626. GO TO 280
  1627. END IF
  1628. END IF
  1629. *
  1630. * Do Test 26
  1631. *
  1632. TEMP1 = ZERO
  1633. TEMP2 = ZERO
  1634. *
  1635. DO 210 J = 1, N
  1636. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1637. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1638. 210 CONTINUE
  1639. *
  1640. RESULT( 26 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) )
  1641. *
  1642. * Only test DSTEMR if IEEE compliant
  1643. *
  1644. IF( ILAENV( 10, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 .AND.
  1645. $ ILAENV( 11, 'DSTEMR', 'VA', 1, 0, 0, 0 ).EQ.1 ) THEN
  1646. *
  1647. * Call DSTEMR, do test 27 (relative eigenvalue accuracy)
  1648. *
  1649. * If S is positive definite and diagonally dominant,
  1650. * ask for all eigenvalues with high relative accuracy.
  1651. *
  1652. VL = ZERO
  1653. VU = ZERO
  1654. IL = 0
  1655. IU = 0
  1656. IF( JTYPE.EQ.21 .AND. SREL ) THEN
  1657. NTEST = 27
  1658. ABSTOL = UNFL + UNFL
  1659. CALL DSTEMR( 'V', 'A', N, SD, SE, VL, VU, IL, IU,
  1660. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1661. $ WORK, LWORK, IWORK( 2*N+1 ), LWORK-2*N,
  1662. $ IINFO )
  1663. IF( IINFO.NE.0 ) THEN
  1664. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A,rel)',
  1665. $ IINFO, N, JTYPE, IOLDSD
  1666. INFO = ABS( IINFO )
  1667. IF( IINFO.LT.0 ) THEN
  1668. RETURN
  1669. ELSE
  1670. RESULT( 27 ) = ULPINV
  1671. GO TO 270
  1672. END IF
  1673. END IF
  1674. *
  1675. * Do test 27
  1676. *
  1677. TEMP2 = TWO*( TWO*N-ONE )*ULP*( ONE+EIGHT*HALF**2 ) /
  1678. $ ( ONE-HALF )**4
  1679. *
  1680. TEMP1 = ZERO
  1681. DO 220 J = 1, N
  1682. TEMP1 = MAX( TEMP1, ABS( D4( J )-WR( N-J+1 ) ) /
  1683. $ ( ABSTOL+ABS( D4( J ) ) ) )
  1684. 220 CONTINUE
  1685. *
  1686. RESULT( 27 ) = TEMP1 / TEMP2
  1687. *
  1688. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1689. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1690. IF( IU.LT.IL ) THEN
  1691. ITEMP = IU
  1692. IU = IL
  1693. IL = ITEMP
  1694. END IF
  1695. *
  1696. IF( SRANGE ) THEN
  1697. NTEST = 28
  1698. ABSTOL = UNFL + UNFL
  1699. CALL DSTEMR( 'V', 'I', N, SD, SE, VL, VU, IL, IU,
  1700. $ M, WR, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1701. $ WORK, LWORK, IWORK( 2*N+1 ),
  1702. $ LWORK-2*N, IINFO )
  1703. *
  1704. IF( IINFO.NE.0 ) THEN
  1705. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I,rel)',
  1706. $ IINFO, N, JTYPE, IOLDSD
  1707. INFO = ABS( IINFO )
  1708. IF( IINFO.LT.0 ) THEN
  1709. RETURN
  1710. ELSE
  1711. RESULT( 28 ) = ULPINV
  1712. GO TO 270
  1713. END IF
  1714. END IF
  1715. *
  1716. * Do test 28
  1717. *
  1718. TEMP2 = TWO*( TWO*N-ONE )*ULP*
  1719. $ ( ONE+EIGHT*HALF**2 ) / ( ONE-HALF )**4
  1720. *
  1721. TEMP1 = ZERO
  1722. DO 230 J = IL, IU
  1723. TEMP1 = MAX( TEMP1, ABS( WR( J-IL+1 )-D4( N-J+
  1724. $ 1 ) ) / ( ABSTOL+ABS( WR( J-IL+1 ) ) ) )
  1725. 230 CONTINUE
  1726. *
  1727. RESULT( 28 ) = TEMP1 / TEMP2
  1728. ELSE
  1729. RESULT( 28 ) = ZERO
  1730. END IF
  1731. ELSE
  1732. RESULT( 27 ) = ZERO
  1733. RESULT( 28 ) = ZERO
  1734. END IF
  1735. *
  1736. * Call DSTEMR(V,I) to compute D1 and Z, do tests.
  1737. *
  1738. * Compute D1 and Z
  1739. *
  1740. CALL DCOPY( N, SD, 1, D5, 1 )
  1741. IF( N.GT.0 )
  1742. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1743. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1744. *
  1745. IF( SRANGE ) THEN
  1746. NTEST = 29
  1747. IL = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1748. IU = 1 + ( N-1 )*INT( DLARND( 1, ISEED2 ) )
  1749. IF( IU.LT.IL ) THEN
  1750. ITEMP = IU
  1751. IU = IL
  1752. IL = ITEMP
  1753. END IF
  1754. CALL DSTEMR( 'V', 'I', N, D5, WORK, VL, VU, IL, IU,
  1755. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1756. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1757. $ LIWORK-2*N, IINFO )
  1758. IF( IINFO.NE.0 ) THEN
  1759. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,I)', IINFO,
  1760. $ N, JTYPE, IOLDSD
  1761. INFO = ABS( IINFO )
  1762. IF( IINFO.LT.0 ) THEN
  1763. RETURN
  1764. ELSE
  1765. RESULT( 29 ) = ULPINV
  1766. GO TO 280
  1767. END IF
  1768. END IF
  1769. *
  1770. * Do Tests 29 and 30
  1771. *
  1772. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1773. $ M, RESULT( 29 ) )
  1774. *
  1775. * Call DSTEMR to compute D2, do tests.
  1776. *
  1777. * Compute D2
  1778. *
  1779. CALL DCOPY( N, SD, 1, D5, 1 )
  1780. IF( N.GT.0 )
  1781. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1782. *
  1783. NTEST = 31
  1784. CALL DSTEMR( 'N', 'I', N, D5, WORK, VL, VU, IL, IU,
  1785. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1786. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1787. $ LIWORK-2*N, IINFO )
  1788. IF( IINFO.NE.0 ) THEN
  1789. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,I)', IINFO,
  1790. $ N, JTYPE, IOLDSD
  1791. INFO = ABS( IINFO )
  1792. IF( IINFO.LT.0 ) THEN
  1793. RETURN
  1794. ELSE
  1795. RESULT( 31 ) = ULPINV
  1796. GO TO 280
  1797. END IF
  1798. END IF
  1799. *
  1800. * Do Test 31
  1801. *
  1802. TEMP1 = ZERO
  1803. TEMP2 = ZERO
  1804. *
  1805. DO 240 J = 1, IU - IL + 1
  1806. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1807. $ ABS( D2( J ) ) )
  1808. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1809. 240 CONTINUE
  1810. *
  1811. RESULT( 31 ) = TEMP2 / MAX( UNFL,
  1812. $ ULP*MAX( TEMP1, TEMP2 ) )
  1813. *
  1814. * Call DSTEMR(V,V) to compute D1 and Z, do tests.
  1815. *
  1816. * Compute D1 and Z
  1817. *
  1818. CALL DCOPY( N, SD, 1, D5, 1 )
  1819. IF( N.GT.0 )
  1820. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1821. CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDU )
  1822. *
  1823. NTEST = 32
  1824. *
  1825. IF( N.GT.0 ) THEN
  1826. IF( IL.NE.1 ) THEN
  1827. VL = D2( IL ) - MAX( HALF*
  1828. $ ( D2( IL )-D2( IL-1 ) ), ULP*ANORM,
  1829. $ TWO*RTUNFL )
  1830. ELSE
  1831. VL = D2( 1 ) - MAX( HALF*( D2( N )-D2( 1 ) ),
  1832. $ ULP*ANORM, TWO*RTUNFL )
  1833. END IF
  1834. IF( IU.NE.N ) THEN
  1835. VU = D2( IU ) + MAX( HALF*
  1836. $ ( D2( IU+1 )-D2( IU ) ), ULP*ANORM,
  1837. $ TWO*RTUNFL )
  1838. ELSE
  1839. VU = D2( N ) + MAX( HALF*( D2( N )-D2( 1 ) ),
  1840. $ ULP*ANORM, TWO*RTUNFL )
  1841. END IF
  1842. ELSE
  1843. VL = ZERO
  1844. VU = ONE
  1845. END IF
  1846. *
  1847. CALL DSTEMR( 'V', 'V', N, D5, WORK, VL, VU, IL, IU,
  1848. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1849. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1850. $ LIWORK-2*N, IINFO )
  1851. IF( IINFO.NE.0 ) THEN
  1852. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,V)', IINFO,
  1853. $ N, JTYPE, IOLDSD
  1854. INFO = ABS( IINFO )
  1855. IF( IINFO.LT.0 ) THEN
  1856. RETURN
  1857. ELSE
  1858. RESULT( 32 ) = ULPINV
  1859. GO TO 280
  1860. END IF
  1861. END IF
  1862. *
  1863. * Do Tests 32 and 33
  1864. *
  1865. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK,
  1866. $ M, RESULT( 32 ) )
  1867. *
  1868. * Call DSTEMR to compute D2, do tests.
  1869. *
  1870. * Compute D2
  1871. *
  1872. CALL DCOPY( N, SD, 1, D5, 1 )
  1873. IF( N.GT.0 )
  1874. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1875. *
  1876. NTEST = 34
  1877. CALL DSTEMR( 'N', 'V', N, D5, WORK, VL, VU, IL, IU,
  1878. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1879. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1880. $ LIWORK-2*N, IINFO )
  1881. IF( IINFO.NE.0 ) THEN
  1882. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,V)', IINFO,
  1883. $ N, JTYPE, IOLDSD
  1884. INFO = ABS( IINFO )
  1885. IF( IINFO.LT.0 ) THEN
  1886. RETURN
  1887. ELSE
  1888. RESULT( 34 ) = ULPINV
  1889. GO TO 280
  1890. END IF
  1891. END IF
  1892. *
  1893. * Do Test 34
  1894. *
  1895. TEMP1 = ZERO
  1896. TEMP2 = ZERO
  1897. *
  1898. DO 250 J = 1, IU - IL + 1
  1899. TEMP1 = MAX( TEMP1, ABS( D1( J ) ),
  1900. $ ABS( D2( J ) ) )
  1901. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1902. 250 CONTINUE
  1903. *
  1904. RESULT( 34 ) = TEMP2 / MAX( UNFL,
  1905. $ ULP*MAX( TEMP1, TEMP2 ) )
  1906. ELSE
  1907. RESULT( 29 ) = ZERO
  1908. RESULT( 30 ) = ZERO
  1909. RESULT( 31 ) = ZERO
  1910. RESULT( 32 ) = ZERO
  1911. RESULT( 33 ) = ZERO
  1912. RESULT( 34 ) = ZERO
  1913. END IF
  1914. *
  1915. * Call DSTEMR(V,A) to compute D1 and Z, do tests.
  1916. *
  1917. * Compute D1 and Z
  1918. *
  1919. CALL DCOPY( N, SD, 1, D5, 1 )
  1920. IF( N.GT.0 )
  1921. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1922. *
  1923. NTEST = 35
  1924. *
  1925. CALL DSTEMR( 'V', 'A', N, D5, WORK, VL, VU, IL, IU,
  1926. $ M, D1, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1927. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1928. $ LIWORK-2*N, IINFO )
  1929. IF( IINFO.NE.0 ) THEN
  1930. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(V,A)', IINFO, N,
  1931. $ JTYPE, IOLDSD
  1932. INFO = ABS( IINFO )
  1933. IF( IINFO.LT.0 ) THEN
  1934. RETURN
  1935. ELSE
  1936. RESULT( 35 ) = ULPINV
  1937. GO TO 280
  1938. END IF
  1939. END IF
  1940. *
  1941. * Do Tests 35 and 36
  1942. *
  1943. CALL DSTT22( N, M, 0, SD, SE, D1, DUMMA, Z, LDU, WORK, M,
  1944. $ RESULT( 35 ) )
  1945. *
  1946. * Call DSTEMR to compute D2, do tests.
  1947. *
  1948. * Compute D2
  1949. *
  1950. CALL DCOPY( N, SD, 1, D5, 1 )
  1951. IF( N.GT.0 )
  1952. $ CALL DCOPY( N-1, SE, 1, WORK, 1 )
  1953. *
  1954. NTEST = 37
  1955. CALL DSTEMR( 'N', 'A', N, D5, WORK, VL, VU, IL, IU,
  1956. $ M, D2, Z, LDU, N, IWORK( 1 ), TRYRAC,
  1957. $ WORK( N+1 ), LWORK-N, IWORK( 2*N+1 ),
  1958. $ LIWORK-2*N, IINFO )
  1959. IF( IINFO.NE.0 ) THEN
  1960. WRITE( NOUNIT, FMT = 9999 )'DSTEMR(N,A)', IINFO, N,
  1961. $ JTYPE, IOLDSD
  1962. INFO = ABS( IINFO )
  1963. IF( IINFO.LT.0 ) THEN
  1964. RETURN
  1965. ELSE
  1966. RESULT( 37 ) = ULPINV
  1967. GO TO 280
  1968. END IF
  1969. END IF
  1970. *
  1971. * Do Test 37
  1972. *
  1973. TEMP1 = ZERO
  1974. TEMP2 = ZERO
  1975. *
  1976. DO 260 J = 1, N
  1977. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D2( J ) ) )
  1978. TEMP2 = MAX( TEMP2, ABS( D1( J )-D2( J ) ) )
  1979. 260 CONTINUE
  1980. *
  1981. RESULT( 37 ) = TEMP2 / MAX( UNFL,
  1982. $ ULP*MAX( TEMP1, TEMP2 ) )
  1983. END IF
  1984. 270 CONTINUE
  1985. 280 CONTINUE
  1986. NTESTT = NTESTT + NTEST
  1987. *
  1988. * End of Loop -- Check for RESULT(j) > THRESH
  1989. *
  1990. * Print out tests which fail.
  1991. *
  1992. DO 290 JR = 1, NTEST
  1993. IF( RESULT( JR ).GE.THRESH ) THEN
  1994. *
  1995. * If this is the first test to fail,
  1996. * print a header to the data file.
  1997. *
  1998. IF( NERRS.EQ.0 ) THEN
  1999. WRITE( NOUNIT, FMT = 9998 )'DST'
  2000. WRITE( NOUNIT, FMT = 9997 )
  2001. WRITE( NOUNIT, FMT = 9996 )
  2002. WRITE( NOUNIT, FMT = 9995 )'Symmetric'
  2003. WRITE( NOUNIT, FMT = 9994 )
  2004. *
  2005. * Tests performed
  2006. *
  2007. WRITE( NOUNIT, FMT = 9988 )
  2008. END IF
  2009. NERRS = NERRS + 1
  2010. WRITE( NOUNIT, FMT = 9990 )N, IOLDSD, JTYPE, JR,
  2011. $ RESULT( JR )
  2012. END IF
  2013. 290 CONTINUE
  2014. 300 CONTINUE
  2015. 310 CONTINUE
  2016. *
  2017. * Summary
  2018. *
  2019. CALL DLASUM( 'DST', NOUNIT, NERRS, NTESTT )
  2020. RETURN
  2021. *
  2022. 9999 FORMAT( ' DCHKST2STG: ', A, ' returned INFO=', I6, '.', / 9X,
  2023. $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  2024. *
  2025. 9998 FORMAT( / 1X, A3, ' -- Real Symmetric eigenvalue problem' )
  2026. 9997 FORMAT( ' Matrix types (see DCHKST2STG for details): ' )
  2027. *
  2028. 9996 FORMAT( / ' Special Matrices:',
  2029. $ / ' 1=Zero matrix. ',
  2030. $ ' 5=Diagonal: clustered entries.',
  2031. $ / ' 2=Identity matrix. ',
  2032. $ ' 6=Diagonal: large, evenly spaced.',
  2033. $ / ' 3=Diagonal: evenly spaced entries. ',
  2034. $ ' 7=Diagonal: small, evenly spaced.',
  2035. $ / ' 4=Diagonal: geometr. spaced entries.' )
  2036. 9995 FORMAT( ' Dense ', A, ' Matrices:',
  2037. $ / ' 8=Evenly spaced eigenvals. ',
  2038. $ ' 12=Small, evenly spaced eigenvals.',
  2039. $ / ' 9=Geometrically spaced eigenvals. ',
  2040. $ ' 13=Matrix with random O(1) entries.',
  2041. $ / ' 10=Clustered eigenvalues. ',
  2042. $ ' 14=Matrix with large random entries.',
  2043. $ / ' 11=Large, evenly spaced eigenvals. ',
  2044. $ ' 15=Matrix with small random entries.' )
  2045. 9994 FORMAT( ' 16=Positive definite, evenly spaced eigenvalues',
  2046. $ / ' 17=Positive definite, geometrically spaced eigenvlaues',
  2047. $ / ' 18=Positive definite, clustered eigenvalues',
  2048. $ / ' 19=Positive definite, small evenly spaced eigenvalues',
  2049. $ / ' 20=Positive definite, large evenly spaced eigenvalues',
  2050. $ / ' 21=Diagonally dominant tridiagonal, geometrically',
  2051. $ ' spaced eigenvalues' )
  2052. *
  2053. 9990 FORMAT( ' N=', I5, ', seed=', 4( I4, ',' ), ' type ', I2,
  2054. $ ', test(', I2, ')=', G10.3 )
  2055. *
  2056. 9988 FORMAT( / 'Test performed: see DCHKST2STG for details.', / )
  2057. *
  2058. * End of DCHKST2STG
  2059. *
  2060. END