You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgrqts.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. *> \brief \b CGRQTS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE CGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  12. * BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  13. *
  14. * .. Scalar Arguments ..
  15. * INTEGER LDA, LDB, LWORK, M, P, N
  16. * ..
  17. * .. Array Arguments ..
  18. * REAL RESULT( 4 ), RWORK( * )
  19. * COMPLEX A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  20. * $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
  21. * $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
  22. * $ TAUA( * ), TAUB( * ), WORK( LWORK )
  23. * ..
  24. *
  25. *
  26. *> \par Purpose:
  27. * =============
  28. *>
  29. *> \verbatim
  30. *>
  31. *> CGRQTS tests CGGRQF, which computes the GRQ factorization of an
  32. *> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
  33. *> \endverbatim
  34. *
  35. * Arguments:
  36. * ==========
  37. *
  38. *> \param[in] M
  39. *> \verbatim
  40. *> M is INTEGER
  41. *> The number of rows of the matrix A. M >= 0.
  42. *> \endverbatim
  43. *>
  44. *> \param[in] P
  45. *> \verbatim
  46. *> P is INTEGER
  47. *> The number of rows of the matrix B. P >= 0.
  48. *> \endverbatim
  49. *>
  50. *> \param[in] N
  51. *> \verbatim
  52. *> N is INTEGER
  53. *> The number of columns of the matrices A and B. N >= 0.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] A
  57. *> \verbatim
  58. *> A is COMPLEX array, dimension (LDA,N)
  59. *> The M-by-N matrix A.
  60. *> \endverbatim
  61. *>
  62. *> \param[out] AF
  63. *> \verbatim
  64. *> AF is COMPLEX array, dimension (LDA,N)
  65. *> Details of the GRQ factorization of A and B, as returned
  66. *> by CGGRQF, see CGGRQF for further details.
  67. *> \endverbatim
  68. *>
  69. *> \param[out] Q
  70. *> \verbatim
  71. *> Q is COMPLEX array, dimension (LDA,N)
  72. *> The N-by-N unitary matrix Q.
  73. *> \endverbatim
  74. *>
  75. *> \param[out] R
  76. *> \verbatim
  77. *> R is COMPLEX array, dimension (LDA,MAX(M,N))
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDA
  81. *> \verbatim
  82. *> LDA is INTEGER
  83. *> The leading dimension of the arrays A, AF, R and Q.
  84. *> LDA >= max(M,N).
  85. *> \endverbatim
  86. *>
  87. *> \param[out] TAUA
  88. *> \verbatim
  89. *> TAUA is COMPLEX array, dimension (min(M,N))
  90. *> The scalar factors of the elementary reflectors, as returned
  91. *> by SGGQRC.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] B
  95. *> \verbatim
  96. *> B is COMPLEX array, dimension (LDB,N)
  97. *> On entry, the P-by-N matrix A.
  98. *> \endverbatim
  99. *>
  100. *> \param[out] BF
  101. *> \verbatim
  102. *> BF is COMPLEX array, dimension (LDB,N)
  103. *> Details of the GQR factorization of A and B, as returned
  104. *> by CGGRQF, see CGGRQF for further details.
  105. *> \endverbatim
  106. *>
  107. *> \param[out] Z
  108. *> \verbatim
  109. *> Z is REAL array, dimension (LDB,P)
  110. *> The P-by-P unitary matrix Z.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] T
  114. *> \verbatim
  115. *> T is COMPLEX array, dimension (LDB,max(P,N))
  116. *> \endverbatim
  117. *>
  118. *> \param[out] BWK
  119. *> \verbatim
  120. *> BWK is COMPLEX array, dimension (LDB,N)
  121. *> \endverbatim
  122. *>
  123. *> \param[in] LDB
  124. *> \verbatim
  125. *> LDB is INTEGER
  126. *> The leading dimension of the arrays B, BF, Z and T.
  127. *> LDB >= max(P,N).
  128. *> \endverbatim
  129. *>
  130. *> \param[out] TAUB
  131. *> \verbatim
  132. *> TAUB is COMPLEX array, dimension (min(P,N))
  133. *> The scalar factors of the elementary reflectors, as returned
  134. *> by SGGRQF.
  135. *> \endverbatim
  136. *>
  137. *> \param[out] WORK
  138. *> \verbatim
  139. *> WORK is COMPLEX array, dimension (LWORK)
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK, LWORK >= max(M,P,N)**2.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] RWORK
  149. *> \verbatim
  150. *> RWORK is REAL array, dimension (M)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] RESULT
  154. *> \verbatim
  155. *> RESULT is REAL array, dimension (4)
  156. *> The test ratios:
  157. *> RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
  158. *> RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
  159. *> RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
  160. *> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
  161. *> \endverbatim
  162. *
  163. * Authors:
  164. * ========
  165. *
  166. *> \author Univ. of Tennessee
  167. *> \author Univ. of California Berkeley
  168. *> \author Univ. of Colorado Denver
  169. *> \author NAG Ltd.
  170. *
  171. *> \ingroup complex_eig
  172. *
  173. * =====================================================================
  174. SUBROUTINE CGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
  175. $ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
  176. *
  177. * -- LAPACK test routine --
  178. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  179. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  180. *
  181. * .. Scalar Arguments ..
  182. INTEGER LDA, LDB, LWORK, M, P, N
  183. * ..
  184. * .. Array Arguments ..
  185. REAL RESULT( 4 ), RWORK( * )
  186. COMPLEX A( LDA, * ), AF( LDA, * ), R( LDA, * ),
  187. $ Q( LDA, * ), B( LDB, * ), BF( LDB, * ),
  188. $ T( LDB, * ), Z( LDB, * ), BWK( LDB, * ),
  189. $ TAUA( * ), TAUB( * ), WORK( LWORK )
  190. * ..
  191. *
  192. * =====================================================================
  193. *
  194. * .. Parameters ..
  195. REAL ZERO, ONE
  196. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  197. COMPLEX CZERO, CONE
  198. PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
  199. $ CONE = ( 1.0E+0, 0.0E+0 ) )
  200. COMPLEX CROGUE
  201. PARAMETER ( CROGUE = ( -1.0E+10, 0.0E+0 ) )
  202. * ..
  203. * .. Local Scalars ..
  204. INTEGER INFO
  205. REAL ANORM, BNORM, ULP, UNFL, RESID
  206. * ..
  207. * .. External Functions ..
  208. REAL SLAMCH, CLANGE, CLANHE
  209. EXTERNAL SLAMCH, CLANGE, CLANHE
  210. * ..
  211. * .. External Subroutines ..
  212. EXTERNAL CGEMM, CGGRQF, CLACPY, CLASET, CUNGQR,
  213. $ CUNGRQ, CHERK
  214. * ..
  215. * .. Intrinsic Functions ..
  216. INTRINSIC MAX, MIN, REAL
  217. * ..
  218. * .. Executable Statements ..
  219. *
  220. ULP = SLAMCH( 'Precision' )
  221. UNFL = SLAMCH( 'Safe minimum' )
  222. *
  223. * Copy the matrix A to the array AF.
  224. *
  225. CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
  226. CALL CLACPY( 'Full', P, N, B, LDB, BF, LDB )
  227. *
  228. ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
  229. BNORM = MAX( CLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
  230. *
  231. * Factorize the matrices A and B in the arrays AF and BF.
  232. *
  233. CALL CGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
  234. $ LWORK, INFO )
  235. *
  236. * Generate the N-by-N matrix Q
  237. *
  238. CALL CLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
  239. IF( M.LE.N ) THEN
  240. IF( M.GT.0 .AND. M.LT.N )
  241. $ CALL CLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
  242. IF( M.GT.1 )
  243. $ CALL CLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
  244. $ Q( N-M+2, N-M+1 ), LDA )
  245. ELSE
  246. IF( N.GT.1 )
  247. $ CALL CLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
  248. $ Q( 2, 1 ), LDA )
  249. END IF
  250. CALL CUNGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
  251. *
  252. * Generate the P-by-P matrix Z
  253. *
  254. CALL CLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
  255. IF( P.GT.1 )
  256. $ CALL CLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
  257. CALL CUNGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
  258. *
  259. * Copy R
  260. *
  261. CALL CLASET( 'Full', M, N, CZERO, CZERO, R, LDA )
  262. IF( M.LE.N )THEN
  263. CALL CLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
  264. $ LDA )
  265. ELSE
  266. CALL CLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
  267. CALL CLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
  268. $ LDA )
  269. END IF
  270. *
  271. * Copy T
  272. *
  273. CALL CLASET( 'Full', P, N, CZERO, CZERO, T, LDB )
  274. CALL CLACPY( 'Upper', P, N, BF, LDB, T, LDB )
  275. *
  276. * Compute R - A*Q'
  277. *
  278. CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N, -CONE,
  279. $ A, LDA, Q, LDA, CONE, R, LDA )
  280. *
  281. * Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
  282. *
  283. RESID = CLANGE( '1', M, N, R, LDA, RWORK )
  284. IF( ANORM.GT.ZERO ) THEN
  285. RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
  286. ELSE
  287. RESULT( 1 ) = ZERO
  288. END IF
  289. *
  290. * Compute T*Q - Z'*B
  291. *
  292. CALL CGEMM( 'Conjugate transpose', 'No transpose', P, N, P, CONE,
  293. $ Z, LDB, B, LDB, CZERO, BWK, LDB )
  294. CALL CGEMM( 'No transpose', 'No transpose', P, N, N, CONE, T, LDB,
  295. $ Q, LDA, -CONE, BWK, LDB )
  296. *
  297. * Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
  298. *
  299. RESID = CLANGE( '1', P, N, BWK, LDB, RWORK )
  300. IF( BNORM.GT.ZERO ) THEN
  301. RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
  302. ELSE
  303. RESULT( 2 ) = ZERO
  304. END IF
  305. *
  306. * Compute I - Q*Q'
  307. *
  308. CALL CLASET( 'Full', N, N, CZERO, CONE, R, LDA )
  309. CALL CHERK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
  310. $ LDA )
  311. *
  312. * Compute norm( I - Q'*Q ) / ( N * ULP ) .
  313. *
  314. RESID = CLANHE( '1', 'Upper', N, R, LDA, RWORK )
  315. RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
  316. *
  317. * Compute I - Z'*Z
  318. *
  319. CALL CLASET( 'Full', P, P, CZERO, CONE, T, LDB )
  320. CALL CHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
  321. $ ONE, T, LDB )
  322. *
  323. * Compute norm( I - Z'*Z ) / ( P*ULP ) .
  324. *
  325. RESID = CLANHE( '1', 'Upper', P, T, LDB, RWORK )
  326. RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
  327. *
  328. RETURN
  329. *
  330. * End of CGRQTS
  331. *
  332. END