You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cla_heamv.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423
  1. *> \brief \b CLA_HEAMV computes a matrix-vector product using a Hermitian indefinite matrix to calculate error bounds.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLA_HEAMV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cla_heamv.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cla_heamv.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cla_heamv.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLA_HEAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  22. * INCY )
  23. *
  24. * .. Scalar Arguments ..
  25. * REAL ALPHA, BETA
  26. * INTEGER INCX, INCY, LDA, N, UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), X( * )
  30. * REAL Y( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CLA_SYAMV performs the matrix-vector operation
  40. *>
  41. *> y := alpha*abs(A)*abs(x) + beta*abs(y),
  42. *>
  43. *> where alpha and beta are scalars, x and y are vectors and A is an
  44. *> n by n symmetric matrix.
  45. *>
  46. *> This function is primarily used in calculating error bounds.
  47. *> To protect against underflow during evaluation, components in
  48. *> the resulting vector are perturbed away from zero by (N+1)
  49. *> times the underflow threshold. To prevent unnecessarily large
  50. *> errors for block-structure embedded in general matrices,
  51. *> "symbolically" zero components are not perturbed. A zero
  52. *> entry is considered "symbolic" if all multiplications involved
  53. *> in computing that entry have at least one zero multiplicand.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is INTEGER
  62. *> On entry, UPLO specifies whether the upper or lower
  63. *> triangular part of the array A is to be referenced as
  64. *> follows:
  65. *>
  66. *> UPLO = BLAS_UPPER Only the upper triangular part of A
  67. *> is to be referenced.
  68. *>
  69. *> UPLO = BLAS_LOWER Only the lower triangular part of A
  70. *> is to be referenced.
  71. *>
  72. *> Unchanged on exit.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] N
  76. *> \verbatim
  77. *> N is INTEGER
  78. *> On entry, N specifies the number of columns of the matrix A.
  79. *> N must be at least zero.
  80. *> Unchanged on exit.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] ALPHA
  84. *> \verbatim
  85. *> ALPHA is REAL .
  86. *> On entry, ALPHA specifies the scalar alpha.
  87. *> Unchanged on exit.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] A
  91. *> \verbatim
  92. *> A is COMPLEX array, dimension ( LDA, n ).
  93. *> Before entry, the leading m by n part of the array A must
  94. *> contain the matrix of coefficients.
  95. *> Unchanged on exit.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDA
  99. *> \verbatim
  100. *> LDA is INTEGER
  101. *> On entry, LDA specifies the first dimension of A as declared
  102. *> in the calling (sub) program. LDA must be at least
  103. *> max( 1, n ).
  104. *> Unchanged on exit.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] X
  108. *> \verbatim
  109. *> X is COMPLEX array, dimension
  110. *> ( 1 + ( n - 1 )*abs( INCX ) )
  111. *> Before entry, the incremented array X must contain the
  112. *> vector x.
  113. *> Unchanged on exit.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] INCX
  117. *> \verbatim
  118. *> INCX is INTEGER
  119. *> On entry, INCX specifies the increment for the elements of
  120. *> X. INCX must not be zero.
  121. *> Unchanged on exit.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] BETA
  125. *> \verbatim
  126. *> BETA is REAL .
  127. *> On entry, BETA specifies the scalar beta. When BETA is
  128. *> supplied as zero then Y need not be set on input.
  129. *> Unchanged on exit.
  130. *> \endverbatim
  131. *>
  132. *> \param[in,out] Y
  133. *> \verbatim
  134. *> Y is REAL array, dimension
  135. *> ( 1 + ( n - 1 )*abs( INCY ) )
  136. *> Before entry with BETA non-zero, the incremented array Y
  137. *> must contain the vector y. On exit, Y is overwritten by the
  138. *> updated vector y.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] INCY
  142. *> \verbatim
  143. *> INCY is INTEGER
  144. *> On entry, INCY specifies the increment for the elements of
  145. *> Y. INCY must not be zero.
  146. *> Unchanged on exit.
  147. *> \endverbatim
  148. *
  149. * Authors:
  150. * ========
  151. *
  152. *> \author Univ. of Tennessee
  153. *> \author Univ. of California Berkeley
  154. *> \author Univ. of Colorado Denver
  155. *> \author NAG Ltd.
  156. *
  157. *> \ingroup complexHEcomputational
  158. *
  159. *> \par Further Details:
  160. * =====================
  161. *>
  162. *> \verbatim
  163. *>
  164. *> Level 2 Blas routine.
  165. *>
  166. *> -- Written on 22-October-1986.
  167. *> Jack Dongarra, Argonne National Lab.
  168. *> Jeremy Du Croz, Nag Central Office.
  169. *> Sven Hammarling, Nag Central Office.
  170. *> Richard Hanson, Sandia National Labs.
  171. *> -- Modified for the absolute-value product, April 2006
  172. *> Jason Riedy, UC Berkeley
  173. *> \endverbatim
  174. *>
  175. * =====================================================================
  176. SUBROUTINE CLA_HEAMV( UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y,
  177. $ INCY )
  178. *
  179. * -- LAPACK computational routine --
  180. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  181. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  182. *
  183. * .. Scalar Arguments ..
  184. REAL ALPHA, BETA
  185. INTEGER INCX, INCY, LDA, N, UPLO
  186. * ..
  187. * .. Array Arguments ..
  188. COMPLEX A( LDA, * ), X( * )
  189. REAL Y( * )
  190. * ..
  191. *
  192. * =====================================================================
  193. *
  194. * .. Parameters ..
  195. REAL ONE, ZERO
  196. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  197. * ..
  198. * .. Local Scalars ..
  199. LOGICAL SYMB_ZERO
  200. REAL TEMP, SAFE1
  201. INTEGER I, INFO, IY, J, JX, KX, KY
  202. COMPLEX ZDUM
  203. * ..
  204. * .. External Subroutines ..
  205. EXTERNAL XERBLA, SLAMCH
  206. REAL SLAMCH
  207. * ..
  208. * .. External Functions ..
  209. EXTERNAL ILAUPLO
  210. INTEGER ILAUPLO
  211. * ..
  212. * .. Intrinsic Functions ..
  213. INTRINSIC MAX, ABS, SIGN, REAL, AIMAG
  214. * ..
  215. * .. Statement Functions ..
  216. REAL CABS1
  217. * ..
  218. * .. Statement Function Definitions ..
  219. CABS1( ZDUM ) = ABS( REAL ( ZDUM ) ) + ABS( AIMAG ( ZDUM ) )
  220. * ..
  221. * .. Executable Statements ..
  222. *
  223. * Test the input parameters.
  224. *
  225. INFO = 0
  226. IF ( UPLO.NE.ILAUPLO( 'U' ) .AND.
  227. $ UPLO.NE.ILAUPLO( 'L' ) )THEN
  228. INFO = 1
  229. ELSE IF( N.LT.0 )THEN
  230. INFO = 2
  231. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  232. INFO = 5
  233. ELSE IF( INCX.EQ.0 )THEN
  234. INFO = 7
  235. ELSE IF( INCY.EQ.0 )THEN
  236. INFO = 10
  237. END IF
  238. IF( INFO.NE.0 )THEN
  239. CALL XERBLA( 'CHEMV ', INFO )
  240. RETURN
  241. END IF
  242. *
  243. * Quick return if possible.
  244. *
  245. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  246. $ RETURN
  247. *
  248. * Set up the start points in X and Y.
  249. *
  250. IF( INCX.GT.0 )THEN
  251. KX = 1
  252. ELSE
  253. KX = 1 - ( N - 1 )*INCX
  254. END IF
  255. IF( INCY.GT.0 )THEN
  256. KY = 1
  257. ELSE
  258. KY = 1 - ( N - 1 )*INCY
  259. END IF
  260. *
  261. * Set SAFE1 essentially to be the underflow threshold times the
  262. * number of additions in each row.
  263. *
  264. SAFE1 = SLAMCH( 'Safe minimum' )
  265. SAFE1 = (N+1)*SAFE1
  266. *
  267. * Form y := alpha*abs(A)*abs(x) + beta*abs(y).
  268. *
  269. * The O(N^2) SYMB_ZERO tests could be replaced by O(N) queries to
  270. * the inexact flag. Still doesn't help change the iteration order
  271. * to per-column.
  272. *
  273. IY = KY
  274. IF ( INCX.EQ.1 ) THEN
  275. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  276. DO I = 1, N
  277. IF ( BETA .EQ. ZERO ) THEN
  278. SYMB_ZERO = .TRUE.
  279. Y( IY ) = 0.0
  280. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  281. SYMB_ZERO = .TRUE.
  282. ELSE
  283. SYMB_ZERO = .FALSE.
  284. Y( IY ) = BETA * ABS( Y( IY ) )
  285. END IF
  286. IF ( ALPHA .NE. ZERO ) THEN
  287. DO J = 1, I
  288. TEMP = CABS1( A( J, I ) )
  289. SYMB_ZERO = SYMB_ZERO .AND.
  290. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  291. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  292. END DO
  293. DO J = I+1, N
  294. TEMP = CABS1( A( I, J ) )
  295. SYMB_ZERO = SYMB_ZERO .AND.
  296. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  297. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  298. END DO
  299. END IF
  300. IF (.NOT.SYMB_ZERO)
  301. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  302. IY = IY + INCY
  303. END DO
  304. ELSE
  305. DO I = 1, N
  306. IF ( BETA .EQ. ZERO ) THEN
  307. SYMB_ZERO = .TRUE.
  308. Y( IY ) = 0.0
  309. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  310. SYMB_ZERO = .TRUE.
  311. ELSE
  312. SYMB_ZERO = .FALSE.
  313. Y( IY ) = BETA * ABS( Y( IY ) )
  314. END IF
  315. IF ( ALPHA .NE. ZERO ) THEN
  316. DO J = 1, I
  317. TEMP = CABS1( A( I, J ) )
  318. SYMB_ZERO = SYMB_ZERO .AND.
  319. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  320. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  321. END DO
  322. DO J = I+1, N
  323. TEMP = CABS1( A( J, I ) )
  324. SYMB_ZERO = SYMB_ZERO .AND.
  325. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  326. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( J ) )*TEMP
  327. END DO
  328. END IF
  329. IF (.NOT.SYMB_ZERO)
  330. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  331. IY = IY + INCY
  332. END DO
  333. END IF
  334. ELSE
  335. IF ( UPLO .EQ. ILAUPLO( 'U' ) ) THEN
  336. DO I = 1, N
  337. IF ( BETA .EQ. ZERO ) THEN
  338. SYMB_ZERO = .TRUE.
  339. Y( IY ) = 0.0
  340. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  341. SYMB_ZERO = .TRUE.
  342. ELSE
  343. SYMB_ZERO = .FALSE.
  344. Y( IY ) = BETA * ABS( Y( IY ) )
  345. END IF
  346. JX = KX
  347. IF ( ALPHA .NE. ZERO ) THEN
  348. DO J = 1, I
  349. TEMP = CABS1( A( J, I ) )
  350. SYMB_ZERO = SYMB_ZERO .AND.
  351. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  352. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  353. JX = JX + INCX
  354. END DO
  355. DO J = I+1, N
  356. TEMP = CABS1( A( I, J ) )
  357. SYMB_ZERO = SYMB_ZERO .AND.
  358. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  359. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  360. JX = JX + INCX
  361. END DO
  362. END IF
  363. IF ( .NOT.SYMB_ZERO )
  364. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  365. IY = IY + INCY
  366. END DO
  367. ELSE
  368. DO I = 1, N
  369. IF ( BETA .EQ. ZERO ) THEN
  370. SYMB_ZERO = .TRUE.
  371. Y( IY ) = 0.0
  372. ELSE IF ( Y( IY ) .EQ. ZERO ) THEN
  373. SYMB_ZERO = .TRUE.
  374. ELSE
  375. SYMB_ZERO = .FALSE.
  376. Y( IY ) = BETA * ABS( Y( IY ) )
  377. END IF
  378. JX = KX
  379. IF ( ALPHA .NE. ZERO ) THEN
  380. DO J = 1, I
  381. TEMP = CABS1( A( I, J ) )
  382. SYMB_ZERO = SYMB_ZERO .AND.
  383. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  384. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  385. JX = JX + INCX
  386. END DO
  387. DO J = I+1, N
  388. TEMP = CABS1( A( J, I ) )
  389. SYMB_ZERO = SYMB_ZERO .AND.
  390. $ ( X( J ) .EQ. ZERO .OR. TEMP .EQ. ZERO )
  391. Y( IY ) = Y( IY ) + ALPHA*CABS1( X( JX ) )*TEMP
  392. JX = JX + INCX
  393. END DO
  394. END IF
  395. IF ( .NOT.SYMB_ZERO )
  396. $ Y( IY ) = Y( IY ) + SIGN( SAFE1, Y( IY ) )
  397. IY = IY + INCY
  398. END DO
  399. END IF
  400. END IF
  401. *
  402. RETURN
  403. *
  404. * End of CLA_HEAMV
  405. *
  406. END