You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgees.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
  1. *> \brief <b> CGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGEES + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgees.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgees.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgees.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
  22. * LDVS, WORK, LWORK, RWORK, BWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBVS, SORT
  26. * INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
  27. * ..
  28. * .. Array Arguments ..
  29. * LOGICAL BWORK( * )
  30. * REAL RWORK( * )
  31. * COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
  32. * ..
  33. * .. Function Arguments ..
  34. * LOGICAL SELECT
  35. * EXTERNAL SELECT
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> CGEES computes for an N-by-N complex nonsymmetric matrix A, the
  45. *> eigenvalues, the Schur form T, and, optionally, the matrix of Schur
  46. *> vectors Z. This gives the Schur factorization A = Z*T*(Z**H).
  47. *>
  48. *> Optionally, it also orders the eigenvalues on the diagonal of the
  49. *> Schur form so that selected eigenvalues are at the top left.
  50. *> The leading columns of Z then form an orthonormal basis for the
  51. *> invariant subspace corresponding to the selected eigenvalues.
  52. *>
  53. *> A complex matrix is in Schur form if it is upper triangular.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] JOBVS
  60. *> \verbatim
  61. *> JOBVS is CHARACTER*1
  62. *> = 'N': Schur vectors are not computed;
  63. *> = 'V': Schur vectors are computed.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] SORT
  67. *> \verbatim
  68. *> SORT is CHARACTER*1
  69. *> Specifies whether or not to order the eigenvalues on the
  70. *> diagonal of the Schur form.
  71. *> = 'N': Eigenvalues are not ordered:
  72. *> = 'S': Eigenvalues are ordered (see SELECT).
  73. *> \endverbatim
  74. *>
  75. *> \param[in] SELECT
  76. *> \verbatim
  77. *> SELECT is a LOGICAL FUNCTION of one COMPLEX argument
  78. *> SELECT must be declared EXTERNAL in the calling subroutine.
  79. *> If SORT = 'S', SELECT is used to select eigenvalues to order
  80. *> to the top left of the Schur form.
  81. *> IF SORT = 'N', SELECT is not referenced.
  82. *> The eigenvalue W(j) is selected if SELECT(W(j)) is true.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The order of the matrix A. N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] A
  92. *> \verbatim
  93. *> A is COMPLEX array, dimension (LDA,N)
  94. *> On entry, the N-by-N matrix A.
  95. *> On exit, A has been overwritten by its Schur form T.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] LDA
  99. *> \verbatim
  100. *> LDA is INTEGER
  101. *> The leading dimension of the array A. LDA >= max(1,N).
  102. *> \endverbatim
  103. *>
  104. *> \param[out] SDIM
  105. *> \verbatim
  106. *> SDIM is INTEGER
  107. *> If SORT = 'N', SDIM = 0.
  108. *> If SORT = 'S', SDIM = number of eigenvalues for which
  109. *> SELECT is true.
  110. *> \endverbatim
  111. *>
  112. *> \param[out] W
  113. *> \verbatim
  114. *> W is COMPLEX array, dimension (N)
  115. *> W contains the computed eigenvalues, in the same order that
  116. *> they appear on the diagonal of the output Schur form T.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] VS
  120. *> \verbatim
  121. *> VS is COMPLEX array, dimension (LDVS,N)
  122. *> If JOBVS = 'V', VS contains the unitary matrix Z of Schur
  123. *> vectors.
  124. *> If JOBVS = 'N', VS is not referenced.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDVS
  128. *> \verbatim
  129. *> LDVS is INTEGER
  130. *> The leading dimension of the array VS. LDVS >= 1; if
  131. *> JOBVS = 'V', LDVS >= N.
  132. *> \endverbatim
  133. *>
  134. *> \param[out] WORK
  135. *> \verbatim
  136. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  137. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LWORK
  141. *> \verbatim
  142. *> LWORK is INTEGER
  143. *> The dimension of the array WORK. LWORK >= max(1,2*N).
  144. *> For good performance, LWORK must generally be larger.
  145. *>
  146. *> If LWORK = -1, then a workspace query is assumed; the routine
  147. *> only calculates the optimal size of the WORK array, returns
  148. *> this value as the first entry of the WORK array, and no error
  149. *> message related to LWORK is issued by XERBLA.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] RWORK
  153. *> \verbatim
  154. *> RWORK is REAL array, dimension (N)
  155. *> \endverbatim
  156. *>
  157. *> \param[out] BWORK
  158. *> \verbatim
  159. *> BWORK is LOGICAL array, dimension (N)
  160. *> Not referenced if SORT = 'N'.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] INFO
  164. *> \verbatim
  165. *> INFO is INTEGER
  166. *> = 0: successful exit
  167. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  168. *> > 0: if INFO = i, and i is
  169. *> <= N: the QR algorithm failed to compute all the
  170. *> eigenvalues; elements 1:ILO-1 and i+1:N of W
  171. *> contain those eigenvalues which have converged;
  172. *> if JOBVS = 'V', VS contains the matrix which
  173. *> reduces A to its partially converged Schur form.
  174. *> = N+1: the eigenvalues could not be reordered because
  175. *> some eigenvalues were too close to separate (the
  176. *> problem is very ill-conditioned);
  177. *> = N+2: after reordering, roundoff changed values of
  178. *> some complex eigenvalues so that leading
  179. *> eigenvalues in the Schur form no longer satisfy
  180. *> SELECT = .TRUE.. This could also be caused by
  181. *> underflow due to scaling.
  182. *> \endverbatim
  183. *
  184. * Authors:
  185. * ========
  186. *
  187. *> \author Univ. of Tennessee
  188. *> \author Univ. of California Berkeley
  189. *> \author Univ. of Colorado Denver
  190. *> \author NAG Ltd.
  191. *
  192. *> \ingroup gees
  193. *
  194. * =====================================================================
  195. SUBROUTINE CGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
  196. $ LDVS, WORK, LWORK, RWORK, BWORK, INFO )
  197. *
  198. * -- LAPACK driver routine --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. *
  202. * .. Scalar Arguments ..
  203. CHARACTER JOBVS, SORT
  204. INTEGER INFO, LDA, LDVS, LWORK, N, SDIM
  205. * ..
  206. * .. Array Arguments ..
  207. LOGICAL BWORK( * )
  208. REAL RWORK( * )
  209. COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
  210. * ..
  211. * .. Function Arguments ..
  212. LOGICAL SELECT
  213. EXTERNAL SELECT
  214. * ..
  215. *
  216. * =====================================================================
  217. *
  218. * .. Parameters ..
  219. REAL ZERO, ONE
  220. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  221. * ..
  222. * .. Local Scalars ..
  223. LOGICAL LQUERY, SCALEA, WANTST, WANTVS
  224. INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
  225. $ ITAU, IWRK, MAXWRK, MINWRK
  226. REAL ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
  227. * ..
  228. * .. Local Arrays ..
  229. REAL DUM( 1 )
  230. * ..
  231. * .. External Subroutines ..
  232. EXTERNAL CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY,
  233. $ CLASCL, CTRSEN, CUNGHR, XERBLA
  234. * ..
  235. * .. External Functions ..
  236. LOGICAL LSAME
  237. INTEGER ILAENV
  238. REAL CLANGE, SLAMCH, SROUNDUP_LWORK
  239. EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH, SROUNDUP_LWORK
  240. * ..
  241. * .. Intrinsic Functions ..
  242. INTRINSIC MAX, SQRT
  243. * ..
  244. * .. Executable Statements ..
  245. *
  246. * Test the input arguments
  247. *
  248. INFO = 0
  249. LQUERY = ( LWORK.EQ.-1 )
  250. WANTVS = LSAME( JOBVS, 'V' )
  251. WANTST = LSAME( SORT, 'S' )
  252. IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
  253. INFO = -1
  254. ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
  255. INFO = -2
  256. ELSE IF( N.LT.0 ) THEN
  257. INFO = -4
  258. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  259. INFO = -6
  260. ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
  261. INFO = -10
  262. END IF
  263. *
  264. * Compute workspace
  265. * (Note: Comments in the code beginning "Workspace:" describe the
  266. * minimal amount of workspace needed at that point in the code,
  267. * as well as the preferred amount for good performance.
  268. * CWorkspace refers to complex workspace, and RWorkspace to real
  269. * workspace. NB refers to the optimal block size for the
  270. * immediately following subroutine, as returned by ILAENV.
  271. * HSWORK refers to the workspace preferred by CHSEQR, as
  272. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  273. * the worst case.)
  274. *
  275. IF( INFO.EQ.0 ) THEN
  276. IF( N.EQ.0 ) THEN
  277. MINWRK = 1
  278. MAXWRK = 1
  279. ELSE
  280. MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 )
  281. MINWRK = 2*N
  282. *
  283. CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
  284. $ WORK, -1, IEVAL )
  285. HSWORK = INT( WORK( 1 ) )
  286. *
  287. IF( .NOT.WANTVS ) THEN
  288. MAXWRK = MAX( MAXWRK, HSWORK )
  289. ELSE
  290. MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR',
  291. $ ' ', N, 1, N, -1 ) )
  292. MAXWRK = MAX( MAXWRK, HSWORK )
  293. END IF
  294. END IF
  295. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  296. *
  297. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  298. INFO = -12
  299. END IF
  300. END IF
  301. *
  302. IF( INFO.NE.0 ) THEN
  303. CALL XERBLA( 'CGEES ', -INFO )
  304. RETURN
  305. ELSE IF( LQUERY ) THEN
  306. RETURN
  307. END IF
  308. *
  309. * Quick return if possible
  310. *
  311. IF( N.EQ.0 ) THEN
  312. SDIM = 0
  313. RETURN
  314. END IF
  315. *
  316. * Get machine constants
  317. *
  318. EPS = SLAMCH( 'P' )
  319. SMLNUM = SLAMCH( 'S' )
  320. BIGNUM = ONE / SMLNUM
  321. SMLNUM = SQRT( SMLNUM ) / EPS
  322. BIGNUM = ONE / SMLNUM
  323. *
  324. * Scale A if max element outside range [SMLNUM,BIGNUM]
  325. *
  326. ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
  327. SCALEA = .FALSE.
  328. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  329. SCALEA = .TRUE.
  330. CSCALE = SMLNUM
  331. ELSE IF( ANRM.GT.BIGNUM ) THEN
  332. SCALEA = .TRUE.
  333. CSCALE = BIGNUM
  334. END IF
  335. IF( SCALEA )
  336. $ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  337. *
  338. * Permute the matrix to make it more nearly triangular
  339. * (CWorkspace: none)
  340. * (RWorkspace: need N)
  341. *
  342. IBAL = 1
  343. CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
  344. *
  345. * Reduce to upper Hessenberg form
  346. * (CWorkspace: need 2*N, prefer N+N*NB)
  347. * (RWorkspace: none)
  348. *
  349. ITAU = 1
  350. IWRK = N + ITAU
  351. CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  352. $ LWORK-IWRK+1, IERR )
  353. *
  354. IF( WANTVS ) THEN
  355. *
  356. * Copy Householder vectors to VS
  357. *
  358. CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS )
  359. *
  360. * Generate unitary matrix in VS
  361. * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
  362. * (RWorkspace: none)
  363. *
  364. CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
  365. $ LWORK-IWRK+1, IERR )
  366. END IF
  367. *
  368. SDIM = 0
  369. *
  370. * Perform QR iteration, accumulating Schur vectors in VS if desired
  371. * (CWorkspace: need 1, prefer HSWORK (see comments) )
  372. * (RWorkspace: none)
  373. *
  374. IWRK = ITAU
  375. CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
  376. $ WORK( IWRK ), LWORK-IWRK+1, IEVAL )
  377. IF( IEVAL.GT.0 )
  378. $ INFO = IEVAL
  379. *
  380. * Sort eigenvalues if desired
  381. *
  382. IF( WANTST .AND. INFO.EQ.0 ) THEN
  383. IF( SCALEA )
  384. $ CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR )
  385. DO 10 I = 1, N
  386. BWORK( I ) = SELECT( W( I ) )
  387. 10 CONTINUE
  388. *
  389. * Reorder eigenvalues and transform Schur vectors
  390. * (CWorkspace: none)
  391. * (RWorkspace: none)
  392. *
  393. CALL CTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
  394. $ S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND )
  395. END IF
  396. *
  397. IF( WANTVS ) THEN
  398. *
  399. * Undo balancing
  400. * (CWorkspace: none)
  401. * (RWorkspace: need N)
  402. *
  403. CALL CGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
  404. $ IERR )
  405. END IF
  406. *
  407. IF( SCALEA ) THEN
  408. *
  409. * Undo scaling for the Schur form of A
  410. *
  411. CALL CLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
  412. CALL CCOPY( N, A, LDA+1, W, 1 )
  413. END IF
  414. *
  415. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  416. RETURN
  417. *
  418. * End of CGEES
  419. *
  420. END