You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cspr.f 8.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. *> \brief \b CSPR performs the symmetrical rank-1 update of a complex symmetric packed matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSPR + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cspr.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cspr.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cspr.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INCX, N
  26. * COMPLEX ALPHA
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX AP( * ), X( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CSPR performs the symmetric rank 1 operation
  39. *>
  40. *> A := alpha*x*x**H + A,
  41. *>
  42. *> where alpha is a complex scalar, x is an n element vector and A is an
  43. *> n by n symmetric matrix, supplied in packed form.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> On entry, UPLO specifies whether the upper or lower
  53. *> triangular part of the matrix A is supplied in the packed
  54. *> array AP as follows:
  55. *>
  56. *> UPLO = 'U' or 'u' The upper triangular part of A is
  57. *> supplied in AP.
  58. *>
  59. *> UPLO = 'L' or 'l' The lower triangular part of A is
  60. *> supplied in AP.
  61. *>
  62. *> Unchanged on exit.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> On entry, N specifies the order of the matrix A.
  69. *> N must be at least zero.
  70. *> Unchanged on exit.
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ALPHA
  74. *> \verbatim
  75. *> ALPHA is COMPLEX
  76. *> On entry, ALPHA specifies the scalar alpha.
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] X
  81. *> \verbatim
  82. *> X is COMPLEX array, dimension at least
  83. *> ( 1 + ( N - 1 )*abs( INCX ) ).
  84. *> Before entry, the incremented array X must contain the N-
  85. *> element vector x.
  86. *> Unchanged on exit.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] INCX
  90. *> \verbatim
  91. *> INCX is INTEGER
  92. *> On entry, INCX specifies the increment for the elements of
  93. *> X. INCX must not be zero.
  94. *> Unchanged on exit.
  95. *> \endverbatim
  96. *>
  97. *> \param[in,out] AP
  98. *> \verbatim
  99. *> AP is COMPLEX array, dimension at least
  100. *> ( ( N*( N + 1 ) )/2 ).
  101. *> Before entry, with UPLO = 'U' or 'u', the array AP must
  102. *> contain the upper triangular part of the symmetric matrix
  103. *> packed sequentially, column by column, so that AP( 1 )
  104. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  105. *> and a( 2, 2 ) respectively, and so on. On exit, the array
  106. *> AP is overwritten by the upper triangular part of the
  107. *> updated matrix.
  108. *> Before entry, with UPLO = 'L' or 'l', the array AP must
  109. *> contain the lower triangular part of the symmetric matrix
  110. *> packed sequentially, column by column, so that AP( 1 )
  111. *> contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  112. *> and a( 3, 1 ) respectively, and so on. On exit, the array
  113. *> AP is overwritten by the lower triangular part of the
  114. *> updated matrix.
  115. *> Note that the imaginary parts of the diagonal elements need
  116. *> not be set, they are assumed to be zero, and on exit they
  117. *> are set to zero.
  118. *> \endverbatim
  119. *
  120. * Authors:
  121. * ========
  122. *
  123. *> \author Univ. of Tennessee
  124. *> \author Univ. of California Berkeley
  125. *> \author Univ. of Colorado Denver
  126. *> \author NAG Ltd.
  127. *
  128. *> \date December 2016
  129. *
  130. *> \ingroup complexOTHERauxiliary
  131. *
  132. * =====================================================================
  133. SUBROUTINE CSPR( UPLO, N, ALPHA, X, INCX, AP )
  134. *
  135. * -- LAPACK auxiliary routine (version 3.7.0) --
  136. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  137. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  138. * December 2016
  139. *
  140. * .. Scalar Arguments ..
  141. CHARACTER UPLO
  142. INTEGER INCX, N
  143. COMPLEX ALPHA
  144. * ..
  145. * .. Array Arguments ..
  146. COMPLEX AP( * ), X( * )
  147. * ..
  148. *
  149. * =====================================================================
  150. *
  151. * .. Parameters ..
  152. COMPLEX ZERO
  153. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  154. * ..
  155. * .. Local Scalars ..
  156. INTEGER I, INFO, IX, J, JX, K, KK, KX
  157. COMPLEX TEMP
  158. * ..
  159. * .. External Functions ..
  160. LOGICAL LSAME
  161. EXTERNAL LSAME
  162. * ..
  163. * .. External Subroutines ..
  164. EXTERNAL XERBLA
  165. * ..
  166. * .. Executable Statements ..
  167. *
  168. * Test the input parameters.
  169. *
  170. INFO = 0
  171. IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  172. INFO = 1
  173. ELSE IF( N.LT.0 ) THEN
  174. INFO = 2
  175. ELSE IF( INCX.EQ.0 ) THEN
  176. INFO = 5
  177. END IF
  178. IF( INFO.NE.0 ) THEN
  179. CALL XERBLA( 'CSPR ', INFO )
  180. RETURN
  181. END IF
  182. *
  183. * Quick return if possible.
  184. *
  185. IF( ( N.EQ.0 ) .OR. ( ALPHA.EQ.ZERO ) )
  186. $ RETURN
  187. *
  188. * Set the start point in X if the increment is not unity.
  189. *
  190. IF( INCX.LE.0 ) THEN
  191. KX = 1 - ( N-1 )*INCX
  192. ELSE IF( INCX.NE.1 ) THEN
  193. KX = 1
  194. END IF
  195. *
  196. * Start the operations. In this version the elements of the array AP
  197. * are accessed sequentially with one pass through AP.
  198. *
  199. KK = 1
  200. IF( LSAME( UPLO, 'U' ) ) THEN
  201. *
  202. * Form A when upper triangle is stored in AP.
  203. *
  204. IF( INCX.EQ.1 ) THEN
  205. DO 20 J = 1, N
  206. IF( X( J ).NE.ZERO ) THEN
  207. TEMP = ALPHA*X( J )
  208. K = KK
  209. DO 10 I = 1, J - 1
  210. AP( K ) = AP( K ) + X( I )*TEMP
  211. K = K + 1
  212. 10 CONTINUE
  213. AP( KK+J-1 ) = AP( KK+J-1 ) + X( J )*TEMP
  214. ELSE
  215. AP( KK+J-1 ) = AP( KK+J-1 )
  216. END IF
  217. KK = KK + J
  218. 20 CONTINUE
  219. ELSE
  220. JX = KX
  221. DO 40 J = 1, N
  222. IF( X( JX ).NE.ZERO ) THEN
  223. TEMP = ALPHA*X( JX )
  224. IX = KX
  225. DO 30 K = KK, KK + J - 2
  226. AP( K ) = AP( K ) + X( IX )*TEMP
  227. IX = IX + INCX
  228. 30 CONTINUE
  229. AP( KK+J-1 ) = AP( KK+J-1 ) + X( JX )*TEMP
  230. ELSE
  231. AP( KK+J-1 ) = AP( KK+J-1 )
  232. END IF
  233. JX = JX + INCX
  234. KK = KK + J
  235. 40 CONTINUE
  236. END IF
  237. ELSE
  238. *
  239. * Form A when lower triangle is stored in AP.
  240. *
  241. IF( INCX.EQ.1 ) THEN
  242. DO 60 J = 1, N
  243. IF( X( J ).NE.ZERO ) THEN
  244. TEMP = ALPHA*X( J )
  245. AP( KK ) = AP( KK ) + TEMP*X( J )
  246. K = KK + 1
  247. DO 50 I = J + 1, N
  248. AP( K ) = AP( K ) + X( I )*TEMP
  249. K = K + 1
  250. 50 CONTINUE
  251. ELSE
  252. AP( KK ) = AP( KK )
  253. END IF
  254. KK = KK + N - J + 1
  255. 60 CONTINUE
  256. ELSE
  257. JX = KX
  258. DO 80 J = 1, N
  259. IF( X( JX ).NE.ZERO ) THEN
  260. TEMP = ALPHA*X( JX )
  261. AP( KK ) = AP( KK ) + TEMP*X( JX )
  262. IX = JX
  263. DO 70 K = KK + 1, KK + N - J
  264. IX = IX + INCX
  265. AP( K ) = AP( K ) + X( IX )*TEMP
  266. 70 CONTINUE
  267. ELSE
  268. AP( KK ) = AP( KK )
  269. END IF
  270. JX = JX + INCX
  271. KK = KK + N - J + 1
  272. 80 CONTINUE
  273. END IF
  274. END IF
  275. *
  276. RETURN
  277. *
  278. * End of CSPR
  279. *
  280. END