You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ztplqt2.f 9.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. *> \brief \b ZTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix, which is composed of a triangular block and a pentagonal block, using the compact WY representation for Q.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZTPLQT2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztplqt2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztplqt2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztplqt2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, LDB, LDT, N, M, L
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> ZTPLQT2 computes a LQ a factorization of a complex "triangular-pentagonal"
  37. *> matrix C, which is composed of a triangular block A and pentagonal block B,
  38. *> using the compact WY representation for Q.
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] M
  45. *> \verbatim
  46. *> M is INTEGER
  47. *> The total number of rows of the matrix B.
  48. *> M >= 0.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The number of columns of the matrix B, and the order of
  55. *> the triangular matrix A.
  56. *> N >= 0.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] L
  60. *> \verbatim
  61. *> L is INTEGER
  62. *> The number of rows of the lower trapezoidal part of B.
  63. *> MIN(M,N) >= L >= 0. See Further Details.
  64. *> \endverbatim
  65. *>
  66. *> \param[in,out] A
  67. *> \verbatim
  68. *> A is COMPLEX*16 array, dimension (LDA,M)
  69. *> On entry, the lower triangular M-by-M matrix A.
  70. *> On exit, the elements on and below the diagonal of the array
  71. *> contain the lower triangular matrix L.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,M).
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] B
  81. *> \verbatim
  82. *> B is COMPLEX*16 array, dimension (LDB,N)
  83. *> On entry, the pentagonal M-by-N matrix B. The first N-L columns
  84. *> are rectangular, and the last L columns are lower trapezoidal.
  85. *> On exit, B contains the pentagonal matrix V. See Further Details.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] LDB
  89. *> \verbatim
  90. *> LDB is INTEGER
  91. *> The leading dimension of the array B. LDB >= max(1,M).
  92. *> \endverbatim
  93. *>
  94. *> \param[out] T
  95. *> \verbatim
  96. *> T is COMPLEX*16 array, dimension (LDT,M)
  97. *> The N-by-N upper triangular factor T of the block reflector.
  98. *> See Further Details.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] LDT
  102. *> \verbatim
  103. *> LDT is INTEGER
  104. *> The leading dimension of the array T. LDT >= max(1,M)
  105. *> \endverbatim
  106. *>
  107. *> \param[out] INFO
  108. *> \verbatim
  109. *> INFO is INTEGER
  110. *> = 0: successful exit
  111. *> < 0: if INFO = -i, the i-th argument had an illegal value
  112. *> \endverbatim
  113. *
  114. * Authors:
  115. * ========
  116. *
  117. *> \author Univ. of Tennessee
  118. *> \author Univ. of California Berkeley
  119. *> \author Univ. of Colorado Denver
  120. *> \author NAG Ltd.
  121. *
  122. *> \ingroup doubleOTHERcomputational
  123. *
  124. *> \par Further Details:
  125. * =====================
  126. *>
  127. *> \verbatim
  128. *>
  129. *> The input matrix C is a M-by-(M+N) matrix
  130. *>
  131. *> C = [ A ][ B ]
  132. *>
  133. *>
  134. *> where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
  135. *> matrix consisting of a M-by-(N-L) rectangular matrix B1 left of a M-by-L
  136. *> upper trapezoidal matrix B2:
  137. *>
  138. *> B = [ B1 ][ B2 ]
  139. *> [ B1 ] <- M-by-(N-L) rectangular
  140. *> [ B2 ] <- M-by-L lower trapezoidal.
  141. *>
  142. *> The lower trapezoidal matrix B2 consists of the first L columns of a
  143. *> N-by-N lower triangular matrix, where 0 <= L <= MIN(M,N). If L=0,
  144. *> B is rectangular M-by-N; if M=L=N, B is lower triangular.
  145. *>
  146. *> The matrix W stores the elementary reflectors H(i) in the i-th row
  147. *> above the diagonal (of A) in the M-by-(M+N) input matrix C
  148. *>
  149. *> C = [ A ][ B ]
  150. *> [ A ] <- lower triangular M-by-M
  151. *> [ B ] <- M-by-N pentagonal
  152. *>
  153. *> so that W can be represented as
  154. *>
  155. *> W = [ I ][ V ]
  156. *> [ I ] <- identity, M-by-M
  157. *> [ V ] <- M-by-N, same form as B.
  158. *>
  159. *> Thus, all of information needed for W is contained on exit in B, which
  160. *> we call V above. Note that V has the same form as B; that is,
  161. *>
  162. *> W = [ V1 ][ V2 ]
  163. *> [ V1 ] <- M-by-(N-L) rectangular
  164. *> [ V2 ] <- M-by-L lower trapezoidal.
  165. *>
  166. *> The rows of V represent the vectors which define the H(i)'s.
  167. *> The (M+N)-by-(M+N) block reflector H is then given by
  168. *>
  169. *> H = I - W**T * T * W
  170. *>
  171. *> where W^H is the conjugate transpose of W and T is the upper triangular
  172. *> factor of the block reflector.
  173. *> \endverbatim
  174. *>
  175. * =====================================================================
  176. SUBROUTINE ZTPLQT2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
  177. *
  178. * -- LAPACK computational routine --
  179. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  180. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  181. *
  182. * .. Scalar Arguments ..
  183. INTEGER INFO, LDA, LDB, LDT, N, M, L
  184. * ..
  185. * .. Array Arguments ..
  186. COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * )
  187. * ..
  188. *
  189. * =====================================================================
  190. *
  191. * .. Parameters ..
  192. COMPLEX*16 ONE, ZERO
  193. PARAMETER( ZERO = ( 0.0D+0, 0.0D+0 ),ONE = ( 1.0D+0, 0.0D+0 ) )
  194. * ..
  195. * .. Local Scalars ..
  196. INTEGER I, J, P, MP, NP
  197. COMPLEX*16 ALPHA
  198. * ..
  199. * .. External Subroutines ..
  200. EXTERNAL ZLARFG, ZGEMV, ZGERC, ZTRMV, XERBLA
  201. * ..
  202. * .. Intrinsic Functions ..
  203. INTRINSIC MAX, MIN
  204. * ..
  205. * .. Executable Statements ..
  206. *
  207. * Test the input arguments
  208. *
  209. INFO = 0
  210. IF( M.LT.0 ) THEN
  211. INFO = -1
  212. ELSE IF( N.LT.0 ) THEN
  213. INFO = -2
  214. ELSE IF( L.LT.0 .OR. L.GT.MIN(M,N) ) THEN
  215. INFO = -3
  216. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  217. INFO = -5
  218. ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
  219. INFO = -7
  220. ELSE IF( LDT.LT.MAX( 1, M ) ) THEN
  221. INFO = -9
  222. END IF
  223. IF( INFO.NE.0 ) THEN
  224. CALL XERBLA( 'ZTPLQT2', -INFO )
  225. RETURN
  226. END IF
  227. *
  228. * Quick return if possible
  229. *
  230. IF( N.EQ.0 .OR. M.EQ.0 ) RETURN
  231. *
  232. DO I = 1, M
  233. *
  234. * Generate elementary reflector H(I) to annihilate B(I,:)
  235. *
  236. P = N-L+MIN( L, I )
  237. CALL ZLARFG( P+1, A( I, I ), B( I, 1 ), LDB, T( 1, I ) )
  238. T(1,I)=CONJG(T(1,I))
  239. IF( I.LT.M ) THEN
  240. DO J = 1, P
  241. B( I, J ) = CONJG(B(I,J))
  242. END DO
  243. *
  244. * W(M-I:1) := C(I+1:M,I:N) * C(I,I:N) [use W = T(M,:)]
  245. *
  246. DO J = 1, M-I
  247. T( M, J ) = (A( I+J, I ))
  248. END DO
  249. CALL ZGEMV( 'N', M-I, P, ONE, B( I+1, 1 ), LDB,
  250. $ B( I, 1 ), LDB, ONE, T( M, 1 ), LDT )
  251. *
  252. * C(I+1:M,I:N) = C(I+1:M,I:N) + alpha * C(I,I:N)*W(M-1:1)^H
  253. *
  254. ALPHA = -(T( 1, I ))
  255. DO J = 1, M-I
  256. A( I+J, I ) = A( I+J, I ) + ALPHA*(T( M, J ))
  257. END DO
  258. CALL ZGERC( M-I, P, (ALPHA), T( M, 1 ), LDT,
  259. $ B( I, 1 ), LDB, B( I+1, 1 ), LDB )
  260. DO J = 1, P
  261. B( I, J ) = CONJG(B(I,J))
  262. END DO
  263. END IF
  264. END DO
  265. *
  266. DO I = 2, M
  267. *
  268. * T(I,1:I-1) := C(I:I-1,1:N)**H * (alpha * C(I,I:N))
  269. *
  270. ALPHA = -(T( 1, I ))
  271. DO J = 1, I-1
  272. T( I, J ) = ZERO
  273. END DO
  274. P = MIN( I-1, L )
  275. NP = MIN( N-L+1, N )
  276. MP = MIN( P+1, M )
  277. DO J = 1, N-L+P
  278. B(I,J)=CONJG(B(I,J))
  279. END DO
  280. *
  281. * Triangular part of B2
  282. *
  283. DO J = 1, P
  284. T( I, J ) = (ALPHA*B( I, N-L+J ))
  285. END DO
  286. CALL ZTRMV( 'L', 'N', 'N', P, B( 1, NP ), LDB,
  287. $ T( I, 1 ), LDT )
  288. *
  289. * Rectangular part of B2
  290. *
  291. CALL ZGEMV( 'N', I-1-P, L, ALPHA, B( MP, NP ), LDB,
  292. $ B( I, NP ), LDB, ZERO, T( I,MP ), LDT )
  293. *
  294. * B1
  295. *
  296. CALL ZGEMV( 'N', I-1, N-L, ALPHA, B, LDB, B( I, 1 ), LDB,
  297. $ ONE, T( I, 1 ), LDT )
  298. *
  299. *
  300. * T(1:I-1,I) := T(1:I-1,1:I-1) * T(I,1:I-1)
  301. *
  302. DO J = 1, I-1
  303. T(I,J)=CONJG(T(I,J))
  304. END DO
  305. CALL ZTRMV( 'L', 'C', 'N', I-1, T, LDT, T( I, 1 ), LDT )
  306. DO J = 1, I-1
  307. T(I,J)=CONJG(T(I,J))
  308. END DO
  309. DO J = 1, N-L+P
  310. B(I,J)=CONJG(B(I,J))
  311. END DO
  312. *
  313. * T(I,I) = tau(I)
  314. *
  315. T( I, I ) = T( 1, I )
  316. T( 1, I ) = ZERO
  317. END DO
  318. DO I=1,M
  319. DO J= I+1,M
  320. T(I,J)=(T(J,I))
  321. T(J,I)=ZERO
  322. END DO
  323. END DO
  324. *
  325. * End of ZTPLQT2
  326. *
  327. END