You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zptts2.f 6.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242
  1. *> \brief \b ZPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPTTS2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zptts2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zptts2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zptts2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER IUPLO, LDB, N, NRHS
  25. * ..
  26. * .. Array Arguments ..
  27. * DOUBLE PRECISION D( * )
  28. * COMPLEX*16 B( LDB, * ), E( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZPTTS2 solves a tridiagonal system of the form
  38. *> A * X = B
  39. *> using the factorization A = U**H *D*U or A = L*D*L**H computed by ZPTTRF.
  40. *> D is a diagonal matrix specified in the vector D, U (or L) is a unit
  41. *> bidiagonal matrix whose superdiagonal (subdiagonal) is specified in
  42. *> the vector E, and X and B are N by NRHS matrices.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] IUPLO
  49. *> \verbatim
  50. *> IUPLO is INTEGER
  51. *> Specifies the form of the factorization and whether the
  52. *> vector E is the superdiagonal of the upper bidiagonal factor
  53. *> U or the subdiagonal of the lower bidiagonal factor L.
  54. *> = 1: A = U**H *D*U, E is the superdiagonal of U
  55. *> = 0: A = L*D*L**H, E is the subdiagonal of L
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the tridiagonal matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] NRHS
  65. *> \verbatim
  66. *> NRHS is INTEGER
  67. *> The number of right hand sides, i.e., the number of columns
  68. *> of the matrix B. NRHS >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] D
  72. *> \verbatim
  73. *> D is DOUBLE PRECISION array, dimension (N)
  74. *> The n diagonal elements of the diagonal matrix D from the
  75. *> factorization A = U**H *D*U or A = L*D*L**H.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] E
  79. *> \verbatim
  80. *> E is COMPLEX*16 array, dimension (N-1)
  81. *> If IUPLO = 1, the (n-1) superdiagonal elements of the unit
  82. *> bidiagonal factor U from the factorization A = U**H*D*U.
  83. *> If IUPLO = 0, the (n-1) subdiagonal elements of the unit
  84. *> bidiagonal factor L from the factorization A = L*D*L**H.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] B
  88. *> \verbatim
  89. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  90. *> On entry, the right hand side vectors B for the system of
  91. *> linear equations.
  92. *> On exit, the solution vectors, X.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDB
  96. *> \verbatim
  97. *> LDB is INTEGER
  98. *> The leading dimension of the array B. LDB >= max(1,N).
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \ingroup complex16PTcomputational
  110. *
  111. * =====================================================================
  112. SUBROUTINE ZPTTS2( IUPLO, N, NRHS, D, E, B, LDB )
  113. *
  114. * -- LAPACK computational routine --
  115. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  116. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  117. *
  118. * .. Scalar Arguments ..
  119. INTEGER IUPLO, LDB, N, NRHS
  120. * ..
  121. * .. Array Arguments ..
  122. DOUBLE PRECISION D( * )
  123. COMPLEX*16 B( LDB, * ), E( * )
  124. * ..
  125. *
  126. * =====================================================================
  127. *
  128. * .. Local Scalars ..
  129. INTEGER I, J
  130. * ..
  131. * .. External Subroutines ..
  132. EXTERNAL ZDSCAL
  133. * ..
  134. * .. Intrinsic Functions ..
  135. INTRINSIC DCONJG
  136. * ..
  137. * .. Executable Statements ..
  138. *
  139. * Quick return if possible
  140. *
  141. IF( N.LE.1 ) THEN
  142. IF( N.EQ.1 )
  143. $ CALL ZDSCAL( NRHS, 1.D0 / D( 1 ), B, LDB )
  144. RETURN
  145. END IF
  146. *
  147. IF( IUPLO.EQ.1 ) THEN
  148. *
  149. * Solve A * X = B using the factorization A = U**H *D*U,
  150. * overwriting each right hand side vector with its solution.
  151. *
  152. IF( NRHS.LE.2 ) THEN
  153. J = 1
  154. 10 CONTINUE
  155. *
  156. * Solve U**H * x = b.
  157. *
  158. DO 20 I = 2, N
  159. B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
  160. 20 CONTINUE
  161. *
  162. * Solve D * U * x = b.
  163. *
  164. DO 30 I = 1, N
  165. B( I, J ) = B( I, J ) / D( I )
  166. 30 CONTINUE
  167. DO 40 I = N - 1, 1, -1
  168. B( I, J ) = B( I, J ) - B( I+1, J )*E( I )
  169. 40 CONTINUE
  170. IF( J.LT.NRHS ) THEN
  171. J = J + 1
  172. GO TO 10
  173. END IF
  174. ELSE
  175. DO 70 J = 1, NRHS
  176. *
  177. * Solve U**H * x = b.
  178. *
  179. DO 50 I = 2, N
  180. B( I, J ) = B( I, J ) - B( I-1, J )*DCONJG( E( I-1 ) )
  181. 50 CONTINUE
  182. *
  183. * Solve D * U * x = b.
  184. *
  185. B( N, J ) = B( N, J ) / D( N )
  186. DO 60 I = N - 1, 1, -1
  187. B( I, J ) = B( I, J ) / D( I ) - B( I+1, J )*E( I )
  188. 60 CONTINUE
  189. 70 CONTINUE
  190. END IF
  191. ELSE
  192. *
  193. * Solve A * X = B using the factorization A = L*D*L**H,
  194. * overwriting each right hand side vector with its solution.
  195. *
  196. IF( NRHS.LE.2 ) THEN
  197. J = 1
  198. 80 CONTINUE
  199. *
  200. * Solve L * x = b.
  201. *
  202. DO 90 I = 2, N
  203. B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
  204. 90 CONTINUE
  205. *
  206. * Solve D * L**H * x = b.
  207. *
  208. DO 100 I = 1, N
  209. B( I, J ) = B( I, J ) / D( I )
  210. 100 CONTINUE
  211. DO 110 I = N - 1, 1, -1
  212. B( I, J ) = B( I, J ) - B( I+1, J )*DCONJG( E( I ) )
  213. 110 CONTINUE
  214. IF( J.LT.NRHS ) THEN
  215. J = J + 1
  216. GO TO 80
  217. END IF
  218. ELSE
  219. DO 140 J = 1, NRHS
  220. *
  221. * Solve L * x = b.
  222. *
  223. DO 120 I = 2, N
  224. B( I, J ) = B( I, J ) - B( I-1, J )*E( I-1 )
  225. 120 CONTINUE
  226. *
  227. * Solve D * L**H * x = b.
  228. *
  229. B( N, J ) = B( N, J ) / D( N )
  230. DO 130 I = N - 1, 1, -1
  231. B( I, J ) = B( I, J ) / D( I ) -
  232. $ B( I+1, J )*DCONJG( E( I ) )
  233. 130 CONTINUE
  234. 140 CONTINUE
  235. END IF
  236. END IF
  237. *
  238. RETURN
  239. *
  240. * End of ZPTTS2
  241. *
  242. END