You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlagtm.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. *> \brief \b ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLAGTM + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlagtm.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlagtm.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlagtm.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
  22. * B, LDB )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER LDB, LDX, N, NRHS
  27. * DOUBLE PRECISION ALPHA, BETA
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
  31. * $ X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZLAGTM performs a matrix-vector product of the form
  41. *>
  42. *> B := alpha * A * X + beta * B
  43. *>
  44. *> where A is a tridiagonal matrix of order N, B and X are N by NRHS
  45. *> matrices, and alpha and beta are real scalars, each of which may be
  46. *> 0., 1., or -1.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] TRANS
  53. *> \verbatim
  54. *> TRANS is CHARACTER*1
  55. *> Specifies the operation applied to A.
  56. *> = 'N': No transpose, B := alpha * A * X + beta * B
  57. *> = 'T': Transpose, B := alpha * A**T * X + beta * B
  58. *> = 'C': Conjugate transpose, B := alpha * A**H * X + beta * B
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The order of the matrix A. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] NRHS
  68. *> \verbatim
  69. *> NRHS is INTEGER
  70. *> The number of right hand sides, i.e., the number of columns
  71. *> of the matrices X and B.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] ALPHA
  75. *> \verbatim
  76. *> ALPHA is DOUBLE PRECISION
  77. *> The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
  78. *> it is assumed to be 0.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] DL
  82. *> \verbatim
  83. *> DL is COMPLEX*16 array, dimension (N-1)
  84. *> The (n-1) sub-diagonal elements of T.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] D
  88. *> \verbatim
  89. *> D is COMPLEX*16 array, dimension (N)
  90. *> The diagonal elements of T.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] DU
  94. *> \verbatim
  95. *> DU is COMPLEX*16 array, dimension (N-1)
  96. *> The (n-1) super-diagonal elements of T.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] X
  100. *> \verbatim
  101. *> X is COMPLEX*16 array, dimension (LDX,NRHS)
  102. *> The N by NRHS matrix X.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDX
  106. *> \verbatim
  107. *> LDX is INTEGER
  108. *> The leading dimension of the array X. LDX >= max(N,1).
  109. *> \endverbatim
  110. *>
  111. *> \param[in] BETA
  112. *> \verbatim
  113. *> BETA is DOUBLE PRECISION
  114. *> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
  115. *> it is assumed to be 1.
  116. *> \endverbatim
  117. *>
  118. *> \param[in,out] B
  119. *> \verbatim
  120. *> B is COMPLEX*16 array, dimension (LDB,NRHS)
  121. *> On entry, the N by NRHS matrix B.
  122. *> On exit, B is overwritten by the matrix expression
  123. *> B := alpha * A * X + beta * B.
  124. *> \endverbatim
  125. *>
  126. *> \param[in] LDB
  127. *> \verbatim
  128. *> LDB is INTEGER
  129. *> The leading dimension of the array B. LDB >= max(N,1).
  130. *> \endverbatim
  131. *
  132. * Authors:
  133. * ========
  134. *
  135. *> \author Univ. of Tennessee
  136. *> \author Univ. of California Berkeley
  137. *> \author Univ. of Colorado Denver
  138. *> \author NAG Ltd.
  139. *
  140. *> \ingroup complex16OTHERauxiliary
  141. *
  142. * =====================================================================
  143. SUBROUTINE ZLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA,
  144. $ B, LDB )
  145. *
  146. * -- LAPACK auxiliary routine --
  147. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  148. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  149. *
  150. * .. Scalar Arguments ..
  151. CHARACTER TRANS
  152. INTEGER LDB, LDX, N, NRHS
  153. DOUBLE PRECISION ALPHA, BETA
  154. * ..
  155. * .. Array Arguments ..
  156. COMPLEX*16 B( LDB, * ), D( * ), DL( * ), DU( * ),
  157. $ X( LDX, * )
  158. * ..
  159. *
  160. * =====================================================================
  161. *
  162. * .. Parameters ..
  163. DOUBLE PRECISION ONE, ZERO
  164. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  165. * ..
  166. * .. Local Scalars ..
  167. INTEGER I, J
  168. * ..
  169. * .. External Functions ..
  170. LOGICAL LSAME
  171. EXTERNAL LSAME
  172. * ..
  173. * .. Intrinsic Functions ..
  174. INTRINSIC DCONJG
  175. * ..
  176. * .. Executable Statements ..
  177. *
  178. IF( N.EQ.0 )
  179. $ RETURN
  180. *
  181. * Multiply B by BETA if BETA.NE.1.
  182. *
  183. IF( BETA.EQ.ZERO ) THEN
  184. DO 20 J = 1, NRHS
  185. DO 10 I = 1, N
  186. B( I, J ) = ZERO
  187. 10 CONTINUE
  188. 20 CONTINUE
  189. ELSE IF( BETA.EQ.-ONE ) THEN
  190. DO 40 J = 1, NRHS
  191. DO 30 I = 1, N
  192. B( I, J ) = -B( I, J )
  193. 30 CONTINUE
  194. 40 CONTINUE
  195. END IF
  196. *
  197. IF( ALPHA.EQ.ONE ) THEN
  198. IF( LSAME( TRANS, 'N' ) ) THEN
  199. *
  200. * Compute B := B + A*X
  201. *
  202. DO 60 J = 1, NRHS
  203. IF( N.EQ.1 ) THEN
  204. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  205. ELSE
  206. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  207. $ DU( 1 )*X( 2, J )
  208. B( N, J ) = B( N, J ) + DL( N-1 )*X( N-1, J ) +
  209. $ D( N )*X( N, J )
  210. DO 50 I = 2, N - 1
  211. B( I, J ) = B( I, J ) + DL( I-1 )*X( I-1, J ) +
  212. $ D( I )*X( I, J ) + DU( I )*X( I+1, J )
  213. 50 CONTINUE
  214. END IF
  215. 60 CONTINUE
  216. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  217. *
  218. * Compute B := B + A**T * X
  219. *
  220. DO 80 J = 1, NRHS
  221. IF( N.EQ.1 ) THEN
  222. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
  223. ELSE
  224. B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
  225. $ DL( 1 )*X( 2, J )
  226. B( N, J ) = B( N, J ) + DU( N-1 )*X( N-1, J ) +
  227. $ D( N )*X( N, J )
  228. DO 70 I = 2, N - 1
  229. B( I, J ) = B( I, J ) + DU( I-1 )*X( I-1, J ) +
  230. $ D( I )*X( I, J ) + DL( I )*X( I+1, J )
  231. 70 CONTINUE
  232. END IF
  233. 80 CONTINUE
  234. ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  235. *
  236. * Compute B := B + A**H * X
  237. *
  238. DO 100 J = 1, NRHS
  239. IF( N.EQ.1 ) THEN
  240. B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J )
  241. ELSE
  242. B( 1, J ) = B( 1, J ) + DCONJG( D( 1 ) )*X( 1, J ) +
  243. $ DCONJG( DL( 1 ) )*X( 2, J )
  244. B( N, J ) = B( N, J ) + DCONJG( DU( N-1 ) )*
  245. $ X( N-1, J ) + DCONJG( D( N ) )*X( N, J )
  246. DO 90 I = 2, N - 1
  247. B( I, J ) = B( I, J ) + DCONJG( DU( I-1 ) )*
  248. $ X( I-1, J ) + DCONJG( D( I ) )*
  249. $ X( I, J ) + DCONJG( DL( I ) )*
  250. $ X( I+1, J )
  251. 90 CONTINUE
  252. END IF
  253. 100 CONTINUE
  254. END IF
  255. ELSE IF( ALPHA.EQ.-ONE ) THEN
  256. IF( LSAME( TRANS, 'N' ) ) THEN
  257. *
  258. * Compute B := B - A*X
  259. *
  260. DO 120 J = 1, NRHS
  261. IF( N.EQ.1 ) THEN
  262. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  263. ELSE
  264. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  265. $ DU( 1 )*X( 2, J )
  266. B( N, J ) = B( N, J ) - DL( N-1 )*X( N-1, J ) -
  267. $ D( N )*X( N, J )
  268. DO 110 I = 2, N - 1
  269. B( I, J ) = B( I, J ) - DL( I-1 )*X( I-1, J ) -
  270. $ D( I )*X( I, J ) - DU( I )*X( I+1, J )
  271. 110 CONTINUE
  272. END IF
  273. 120 CONTINUE
  274. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  275. *
  276. * Compute B := B - A**T *X
  277. *
  278. DO 140 J = 1, NRHS
  279. IF( N.EQ.1 ) THEN
  280. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
  281. ELSE
  282. B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
  283. $ DL( 1 )*X( 2, J )
  284. B( N, J ) = B( N, J ) - DU( N-1 )*X( N-1, J ) -
  285. $ D( N )*X( N, J )
  286. DO 130 I = 2, N - 1
  287. B( I, J ) = B( I, J ) - DU( I-1 )*X( I-1, J ) -
  288. $ D( I )*X( I, J ) - DL( I )*X( I+1, J )
  289. 130 CONTINUE
  290. END IF
  291. 140 CONTINUE
  292. ELSE IF( LSAME( TRANS, 'C' ) ) THEN
  293. *
  294. * Compute B := B - A**H *X
  295. *
  296. DO 160 J = 1, NRHS
  297. IF( N.EQ.1 ) THEN
  298. B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J )
  299. ELSE
  300. B( 1, J ) = B( 1, J ) - DCONJG( D( 1 ) )*X( 1, J ) -
  301. $ DCONJG( DL( 1 ) )*X( 2, J )
  302. B( N, J ) = B( N, J ) - DCONJG( DU( N-1 ) )*
  303. $ X( N-1, J ) - DCONJG( D( N ) )*X( N, J )
  304. DO 150 I = 2, N - 1
  305. B( I, J ) = B( I, J ) - DCONJG( DU( I-1 ) )*
  306. $ X( I-1, J ) - DCONJG( D( I ) )*
  307. $ X( I, J ) - DCONJG( DL( I ) )*
  308. $ X( I+1, J )
  309. 150 CONTINUE
  310. END IF
  311. 160 CONTINUE
  312. END IF
  313. END IF
  314. RETURN
  315. *
  316. * End of ZLAGTM
  317. *
  318. END