You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zhegst.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329
  1. *> \brief \b ZHEGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHEGST + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegst.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegst.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegst.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, ITYPE, LDA, LDB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX*16 A( LDA, * ), B( LDB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> ZHEGST reduces a complex Hermitian-definite generalized
  38. *> eigenproblem to standard form.
  39. *>
  40. *> If ITYPE = 1, the problem is A*x = lambda*B*x,
  41. *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
  42. *>
  43. *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
  44. *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
  45. *>
  46. *> B must have been previously factorized as U**H*U or L*L**H by ZPOTRF.
  47. *> \endverbatim
  48. *
  49. * Arguments:
  50. * ==========
  51. *
  52. *> \param[in] ITYPE
  53. *> \verbatim
  54. *> ITYPE is INTEGER
  55. *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
  56. *> = 2 or 3: compute U*A*U**H or L**H*A*L.
  57. *> \endverbatim
  58. *>
  59. *> \param[in] UPLO
  60. *> \verbatim
  61. *> UPLO is CHARACTER*1
  62. *> = 'U': Upper triangle of A is stored and B is factored as
  63. *> U**H*U;
  64. *> = 'L': Lower triangle of A is stored and B is factored as
  65. *> L*L**H.
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A and B. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in,out] A
  75. *> \verbatim
  76. *> A is COMPLEX*16 array, dimension (LDA,N)
  77. *> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
  78. *> N-by-N upper triangular part of A contains the upper
  79. *> triangular part of the matrix A, and the strictly lower
  80. *> triangular part of A is not referenced. If UPLO = 'L', the
  81. *> leading N-by-N lower triangular part of A contains the lower
  82. *> triangular part of the matrix A, and the strictly upper
  83. *> triangular part of A is not referenced.
  84. *>
  85. *> On exit, if INFO = 0, the transformed matrix, stored in the
  86. *> same format as A.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDA
  90. *> \verbatim
  91. *> LDA is INTEGER
  92. *> The leading dimension of the array A. LDA >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in,out] B
  96. *> \verbatim
  97. *> B is COMPLEX*16 array, dimension (LDB,N)
  98. *> The triangular factor from the Cholesky factorization of B,
  99. *> as returned by ZPOTRF.
  100. *> B is modified by the routine but restored on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDB
  104. *> \verbatim
  105. *> LDB is INTEGER
  106. *> The leading dimension of the array B. LDB >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] INFO
  110. *> \verbatim
  111. *> INFO is INTEGER
  112. *> = 0: successful exit
  113. *> < 0: if INFO = -i, the i-th argument had an illegal value
  114. *> \endverbatim
  115. *
  116. * Authors:
  117. * ========
  118. *
  119. *> \author Univ. of Tennessee
  120. *> \author Univ. of California Berkeley
  121. *> \author Univ. of Colorado Denver
  122. *> \author NAG Ltd.
  123. *
  124. *> \ingroup complex16HEcomputational
  125. *
  126. * =====================================================================
  127. SUBROUTINE ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  128. *
  129. * -- LAPACK computational routine --
  130. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  131. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  132. *
  133. * .. Scalar Arguments ..
  134. CHARACTER UPLO
  135. INTEGER INFO, ITYPE, LDA, LDB, N
  136. * ..
  137. * .. Array Arguments ..
  138. COMPLEX*16 A( LDA, * ), B( LDB, * )
  139. * ..
  140. *
  141. * =====================================================================
  142. *
  143. * .. Parameters ..
  144. DOUBLE PRECISION ONE
  145. PARAMETER ( ONE = 1.0D+0 )
  146. COMPLEX*16 CONE, HALF
  147. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  148. $ HALF = ( 0.5D+0, 0.0D+0 ) )
  149. * ..
  150. * .. Local Scalars ..
  151. LOGICAL UPPER
  152. INTEGER K, KB, NB
  153. * ..
  154. * .. External Subroutines ..
  155. EXTERNAL XERBLA, ZHEGS2, ZHEMM, ZHER2K, ZTRMM, ZTRSM
  156. * ..
  157. * .. Intrinsic Functions ..
  158. INTRINSIC MAX, MIN
  159. * ..
  160. * .. External Functions ..
  161. LOGICAL LSAME
  162. INTEGER ILAENV
  163. EXTERNAL LSAME, ILAENV
  164. * ..
  165. * .. Executable Statements ..
  166. *
  167. * Test the input parameters.
  168. *
  169. INFO = 0
  170. UPPER = LSAME( UPLO, 'U' )
  171. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  172. INFO = -1
  173. ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  174. INFO = -2
  175. ELSE IF( N.LT.0 ) THEN
  176. INFO = -3
  177. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  178. INFO = -5
  179. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  180. INFO = -7
  181. END IF
  182. IF( INFO.NE.0 ) THEN
  183. CALL XERBLA( 'ZHEGST', -INFO )
  184. RETURN
  185. END IF
  186. *
  187. * Quick return if possible
  188. *
  189. IF( N.EQ.0 )
  190. $ RETURN
  191. *
  192. * Determine the block size for this environment.
  193. *
  194. NB = ILAENV( 1, 'ZHEGST', UPLO, N, -1, -1, -1 )
  195. *
  196. IF( NB.LE.1 .OR. NB.GE.N ) THEN
  197. *
  198. * Use unblocked code
  199. *
  200. CALL ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  201. ELSE
  202. *
  203. * Use blocked code
  204. *
  205. IF( ITYPE.EQ.1 ) THEN
  206. IF( UPPER ) THEN
  207. *
  208. * Compute inv(U**H)*A*inv(U)
  209. *
  210. DO 10 K = 1, N, NB
  211. KB = MIN( N-K+1, NB )
  212. *
  213. * Update the upper triangle of A(k:n,k:n)
  214. *
  215. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  216. $ B( K, K ), LDB, INFO )
  217. IF( K+KB.LE.N ) THEN
  218. CALL ZTRSM( 'Left', UPLO, 'Conjugate transpose',
  219. $ 'Non-unit', KB, N-K-KB+1, CONE,
  220. $ B( K, K ), LDB, A( K, K+KB ), LDA )
  221. CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  222. $ A( K, K ), LDA, B( K, K+KB ), LDB,
  223. $ CONE, A( K, K+KB ), LDA )
  224. CALL ZHER2K( UPLO, 'Conjugate transpose', N-K-KB+1,
  225. $ KB, -CONE, A( K, K+KB ), LDA,
  226. $ B( K, K+KB ), LDB, ONE,
  227. $ A( K+KB, K+KB ), LDA )
  228. CALL ZHEMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
  229. $ A( K, K ), LDA, B( K, K+KB ), LDB,
  230. $ CONE, A( K, K+KB ), LDA )
  231. CALL ZTRSM( 'Right', UPLO, 'No transpose',
  232. $ 'Non-unit', KB, N-K-KB+1, CONE,
  233. $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
  234. $ LDA )
  235. END IF
  236. 10 CONTINUE
  237. ELSE
  238. *
  239. * Compute inv(L)*A*inv(L**H)
  240. *
  241. DO 20 K = 1, N, NB
  242. KB = MIN( N-K+1, NB )
  243. *
  244. * Update the lower triangle of A(k:n,k:n)
  245. *
  246. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  247. $ B( K, K ), LDB, INFO )
  248. IF( K+KB.LE.N ) THEN
  249. CALL ZTRSM( 'Right', UPLO, 'Conjugate transpose',
  250. $ 'Non-unit', N-K-KB+1, KB, CONE,
  251. $ B( K, K ), LDB, A( K+KB, K ), LDA )
  252. CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  253. $ A( K, K ), LDA, B( K+KB, K ), LDB,
  254. $ CONE, A( K+KB, K ), LDA )
  255. CALL ZHER2K( UPLO, 'No transpose', N-K-KB+1, KB,
  256. $ -CONE, A( K+KB, K ), LDA,
  257. $ B( K+KB, K ), LDB, ONE,
  258. $ A( K+KB, K+KB ), LDA )
  259. CALL ZHEMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
  260. $ A( K, K ), LDA, B( K+KB, K ), LDB,
  261. $ CONE, A( K+KB, K ), LDA )
  262. CALL ZTRSM( 'Left', UPLO, 'No transpose',
  263. $ 'Non-unit', N-K-KB+1, KB, CONE,
  264. $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
  265. $ LDA )
  266. END IF
  267. 20 CONTINUE
  268. END IF
  269. ELSE
  270. IF( UPPER ) THEN
  271. *
  272. * Compute U*A*U**H
  273. *
  274. DO 30 K = 1, N, NB
  275. KB = MIN( N-K+1, NB )
  276. *
  277. * Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
  278. *
  279. CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
  280. $ K-1, KB, CONE, B, LDB, A( 1, K ), LDA )
  281. CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  282. $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
  283. $ LDA )
  284. CALL ZHER2K( UPLO, 'No transpose', K-1, KB, CONE,
  285. $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
  286. $ LDA )
  287. CALL ZHEMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
  288. $ LDA, B( 1, K ), LDB, CONE, A( 1, K ),
  289. $ LDA )
  290. CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose',
  291. $ 'Non-unit', K-1, KB, CONE, B( K, K ), LDB,
  292. $ A( 1, K ), LDA )
  293. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  294. $ B( K, K ), LDB, INFO )
  295. 30 CONTINUE
  296. ELSE
  297. *
  298. * Compute L**H*A*L
  299. *
  300. DO 40 K = 1, N, NB
  301. KB = MIN( N-K+1, NB )
  302. *
  303. * Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
  304. *
  305. CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
  306. $ KB, K-1, CONE, B, LDB, A( K, 1 ), LDA )
  307. CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  308. $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
  309. $ LDA )
  310. CALL ZHER2K( UPLO, 'Conjugate transpose', K-1, KB,
  311. $ CONE, A( K, 1 ), LDA, B( K, 1 ), LDB,
  312. $ ONE, A, LDA )
  313. CALL ZHEMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
  314. $ LDA, B( K, 1 ), LDB, CONE, A( K, 1 ),
  315. $ LDA )
  316. CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose',
  317. $ 'Non-unit', KB, K-1, CONE, B( K, K ), LDB,
  318. $ A( K, 1 ), LDA )
  319. CALL ZHEGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
  320. $ B( K, K ), LDB, INFO )
  321. 40 CONTINUE
  322. END IF
  323. END IF
  324. END IF
  325. RETURN
  326. *
  327. * End of ZHEGST
  328. *
  329. END