You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqz3.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. *> \brief \b SLAQZ3
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAQZ3 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz3.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz3.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz3.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
  22. * $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
  23. * $ ZC, LDZC, WORK, LWORK, REC, INFO )
  24. * IMPLICIT NONE
  25. *
  26. * Arguments
  27. * LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  28. * INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  29. * $ LDQC, LDZC, LWORK, REC
  30. *
  31. * REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  32. * $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * )
  33. * INTEGER, INTENT( OUT ) :: NS, ND, INFO
  34. * REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> SLAQZ3 performs AED
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] ILSCHUR
  50. *> \verbatim
  51. *> ILSCHUR is LOGICAL
  52. *> Determines whether or not to update the full Schur form
  53. *> \endverbatim
  54. *> \param[in] ILQ
  55. *> \verbatim
  56. *> ILQ is LOGICAL
  57. *> Determines whether or not to update the matrix Q
  58. *> \endverbatim
  59. *>
  60. *> \param[in] ILZ
  61. *> \verbatim
  62. *> ILZ is LOGICAL
  63. *> Determines whether or not to update the matrix Z
  64. *> \endverbatim
  65. *>
  66. *> \param[in] N
  67. *> \verbatim
  68. *> N is INTEGER
  69. *> The order of the matrices A, B, Q, and Z. N >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] ILO
  73. *> \verbatim
  74. *> ILO is INTEGER
  75. *> \endverbatim
  76. *>
  77. *> \param[in] IHI
  78. *> \verbatim
  79. *> IHI is INTEGER
  80. *> ILO and IHI mark the rows and columns of (A,B) which
  81. *> are to be normalized
  82. *> \endverbatim
  83. *>
  84. *> \param[in] NW
  85. *> \verbatim
  86. *> NW is INTEGER
  87. *> The desired size of the deflation window.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] A
  91. *> \verbatim
  92. *> A is REAL array, dimension (LDA, N)
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDA
  96. *> \verbatim
  97. *> LDA is INTEGER
  98. *> The leading dimension of the array A. LDA >= max( 1, N ).
  99. *> \endverbatim
  100. *>
  101. *> \param[in,out] B
  102. *> \verbatim
  103. *> B is REAL array, dimension (LDB, N)
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDB
  107. *> \verbatim
  108. *> LDB is INTEGER
  109. *> The leading dimension of the array B. LDB >= max( 1, N ).
  110. *> \endverbatim
  111. *>
  112. *> \param[in,out] Q
  113. *> \verbatim
  114. *> Q is REAL array, dimension (LDQ, N)
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LDQ
  118. *> \verbatim
  119. *> LDQ is INTEGER
  120. *> \endverbatim
  121. *>
  122. *> \param[in,out] Z
  123. *> \verbatim
  124. *> Z is REAL array, dimension (LDZ, N)
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDZ
  128. *> \verbatim
  129. *> LDZ is INTEGER
  130. *> \endverbatim
  131. *>
  132. *> \param[out] NS
  133. *> \verbatim
  134. *> NS is INTEGER
  135. *> The number of unconverged eigenvalues available to
  136. *> use as shifts.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] ND
  140. *> \verbatim
  141. *> ND is INTEGER
  142. *> The number of converged eigenvalues found.
  143. *> \endverbatim
  144. *>
  145. *> \param[out] ALPHAR
  146. *> \verbatim
  147. *> ALPHAR is REAL array, dimension (N)
  148. *> The real parts of each scalar alpha defining an eigenvalue
  149. *> of GNEP.
  150. *> \endverbatim
  151. *>
  152. *> \param[out] ALPHAI
  153. *> \verbatim
  154. *> ALPHAI is REAL array, dimension (N)
  155. *> The imaginary parts of each scalar alpha defining an
  156. *> eigenvalue of GNEP.
  157. *> If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
  158. *> positive, then the j-th and (j+1)-st eigenvalues are a
  159. *> complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
  160. *> \endverbatim
  161. *>
  162. *> \param[out] BETA
  163. *> \verbatim
  164. *> BETA is REAL array, dimension (N)
  165. *> The scalars beta that define the eigenvalues of GNEP.
  166. *> Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
  167. *> beta = BETA(j) represent the j-th eigenvalue of the matrix
  168. *> pair (A,B), in one of the forms lambda = alpha/beta or
  169. *> mu = beta/alpha. Since either lambda or mu may overflow,
  170. *> they should not, in general, be computed.
  171. *> \endverbatim
  172. *>
  173. *> \param[in,out] QC
  174. *> \verbatim
  175. *> QC is REAL array, dimension (LDQC, NW)
  176. *> \endverbatim
  177. *>
  178. *> \param[in] LDQC
  179. *> \verbatim
  180. *> LDQC is INTEGER
  181. *> \endverbatim
  182. *>
  183. *> \param[in,out] ZC
  184. *> \verbatim
  185. *> ZC is REAL array, dimension (LDZC, NW)
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LDZC
  189. *> \verbatim
  190. *> LDZ is INTEGER
  191. *> \endverbatim
  192. *>
  193. *> \param[out] WORK
  194. *> \verbatim
  195. *> WORK is REAL array, dimension (MAX(1,LWORK))
  196. *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
  197. *> \endverbatim
  198. *>
  199. *> \param[in] LWORK
  200. *> \verbatim
  201. *> LWORK is INTEGER
  202. *> The dimension of the array WORK. LWORK >= max(1,N).
  203. *>
  204. *> If LWORK = -1, then a workspace query is assumed; the routine
  205. *> only calculates the optimal size of the WORK array, returns
  206. *> this value as the first entry of the WORK array, and no error
  207. *> message related to LWORK is issued by XERBLA.
  208. *> \endverbatim
  209. *>
  210. *> \param[in] REC
  211. *> \verbatim
  212. *> REC is INTEGER
  213. *> REC indicates the current recursion level. Should be set
  214. *> to 0 on first call.
  215. *> \endverbatim
  216. *>
  217. *> \param[out] INFO
  218. *> \verbatim
  219. *> INFO is INTEGER
  220. *> = 0: successful exit
  221. *> < 0: if INFO = -i, the i-th argument had an illegal value
  222. *> \endverbatim
  223. *
  224. * Authors:
  225. * ========
  226. *
  227. *> \author Thijs Steel, KU Leuven
  228. *
  229. *> \date May 2020
  230. *
  231. *> \ingroup laqz3
  232. *>
  233. * =====================================================================
  234. RECURSIVE SUBROUTINE SLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW,
  235. $ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS,
  236. $ ND, ALPHAR, ALPHAI, BETA, QC, LDQC,
  237. $ ZC, LDZC, WORK, LWORK, REC, INFO )
  238. IMPLICIT NONE
  239. * Arguments
  240. LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  241. INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  242. $ LDQC, LDZC, LWORK, REC
  243. REAL, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  244. $ Z( LDZ, * ), ALPHAR( * ), ALPHAI( * ), BETA( * )
  245. INTEGER, INTENT( OUT ) :: NS, ND, INFO
  246. REAL :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  247. * Parameters
  248. REAL :: ZERO, ONE, HALF
  249. PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
  250. * Local Scalars
  251. LOGICAL :: BULGE
  252. INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, STGEXC_INFO,
  253. $ IFST, ILST, LWORKREQ, QZ_SMALL_INFO
  254. REAL :: S, SMLNUM, ULP, SAFMIN, SAFMAX, C1, S1, TEMP
  255. * External Functions
  256. EXTERNAL :: XERBLA, STGEXC, SLAQZ0, SLACPY, SLASET,
  257. $ SLAQZ2, SROT, SLARTG, SLAG2, SGEMM
  258. REAL, EXTERNAL :: SLAMCH, SROUNDUP_LWORK
  259. INFO = 0
  260. * Set up deflation window
  261. JW = MIN( NW, IHI-ILO+1 )
  262. KWTOP = IHI-JW+1
  263. IF ( KWTOP .EQ. ILO ) THEN
  264. S = ZERO
  265. ELSE
  266. S = A( KWTOP, KWTOP-1 )
  267. END IF
  268. * Determine required workspace
  269. IFST = 1
  270. ILST = JW
  271. CALL STGEXC( .TRUE., .TRUE., JW, A, LDA, B, LDB, QC, LDQC, ZC,
  272. $ LDZC, IFST, ILST, WORK, -1, STGEXC_INFO )
  273. LWORKREQ = INT( WORK( 1 ) )
  274. CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  275. $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
  276. $ LDQC, ZC, LDZC, WORK, -1, REC+1, QZ_SMALL_INFO )
  277. LWORKREQ = MAX( LWORKREQ, INT( WORK( 1 ) )+2*JW**2 )
  278. LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N )
  279. IF ( LWORK .EQ.-1 ) THEN
  280. * workspace query, quick return
  281. WORK( 1 ) = SROUNDUP_LWORK(LWORKREQ)
  282. RETURN
  283. ELSE IF ( LWORK .LT. LWORKREQ ) THEN
  284. INFO = -26
  285. END IF
  286. IF( INFO.NE.0 ) THEN
  287. CALL XERBLA( 'SLAQZ3', -INFO )
  288. RETURN
  289. END IF
  290. * Get machine constants
  291. SAFMIN = SLAMCH( 'SAFE MINIMUM' )
  292. SAFMAX = ONE/SAFMIN
  293. ULP = SLAMCH( 'PRECISION' )
  294. SMLNUM = SAFMIN*( REAL( N )/ULP )
  295. IF ( IHI .EQ. KWTOP ) THEN
  296. * 1 by 1 deflation window, just try a regular deflation
  297. ALPHAR( KWTOP ) = A( KWTOP, KWTOP )
  298. ALPHAI( KWTOP ) = ZERO
  299. BETA( KWTOP ) = B( KWTOP, KWTOP )
  300. NS = 1
  301. ND = 0
  302. IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP,
  303. $ KWTOP ) ) ) ) THEN
  304. NS = 0
  305. ND = 1
  306. IF ( KWTOP .GT. ILO ) THEN
  307. A( KWTOP, KWTOP-1 ) = ZERO
  308. END IF
  309. END IF
  310. END IF
  311. * Store window in case of convergence failure
  312. CALL SLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW )
  313. CALL SLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+
  314. $ 1 ), JW )
  315. * Transform window to real schur form
  316. CALL SLASET( 'FULL', JW, JW, ZERO, ONE, QC, LDQC )
  317. CALL SLASET( 'FULL', JW, JW, ZERO, ONE, ZC, LDZC )
  318. CALL SLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  319. $ B( KWTOP, KWTOP ), LDB, ALPHAR, ALPHAI, BETA, QC,
  320. $ LDQC, ZC, LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2,
  321. $ REC+1, QZ_SMALL_INFO )
  322. IF( QZ_SMALL_INFO .NE. 0 ) THEN
  323. * Convergence failure, restore the window and exit
  324. ND = 0
  325. NS = JW-QZ_SMALL_INFO
  326. CALL SLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA )
  327. CALL SLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP,
  328. $ KWTOP ), LDB )
  329. RETURN
  330. END IF
  331. * Deflation detection loop
  332. IF ( KWTOP .EQ. ILO .OR. S .EQ. ZERO ) THEN
  333. KWBOT = KWTOP-1
  334. ELSE
  335. KWBOT = IHI
  336. K = 1
  337. K2 = 1
  338. DO WHILE ( K .LE. JW )
  339. BULGE = .FALSE.
  340. IF ( KWBOT-KWTOP+1 .GE. 2 ) THEN
  341. BULGE = A( KWBOT, KWBOT-1 ) .NE. ZERO
  342. END IF
  343. IF ( BULGE ) THEN
  344. * Try to deflate complex conjugate eigenvalue pair
  345. TEMP = ABS( A( KWBOT, KWBOT ) )+SQRT( ABS( A( KWBOT,
  346. $ KWBOT-1 ) ) )*SQRT( ABS( A( KWBOT-1, KWBOT ) ) )
  347. IF( TEMP .EQ. ZERO )THEN
  348. TEMP = ABS( S )
  349. END IF
  350. IF ( MAX( ABS( S*QC( 1, KWBOT-KWTOP ) ), ABS( S*QC( 1,
  351. $ KWBOT-KWTOP+1 ) ) ) .LE. MAX( SMLNUM,
  352. $ ULP*TEMP ) ) THEN
  353. * Deflatable
  354. KWBOT = KWBOT-2
  355. ELSE
  356. * Not deflatable, move out of the way
  357. IFST = KWBOT-KWTOP+1
  358. ILST = K2
  359. CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
  360. $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
  361. $ ZC, LDZC, IFST, ILST, WORK, LWORK,
  362. $ STGEXC_INFO )
  363. K2 = K2+2
  364. END IF
  365. K = K+2
  366. ELSE
  367. * Try to deflate real eigenvalue
  368. TEMP = ABS( A( KWBOT, KWBOT ) )
  369. IF( TEMP .EQ. ZERO ) THEN
  370. TEMP = ABS( S )
  371. END IF
  372. IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP*
  373. $ TEMP, SMLNUM ) ) THEN
  374. * Deflatable
  375. KWBOT = KWBOT-1
  376. ELSE
  377. * Not deflatable, move out of the way
  378. IFST = KWBOT-KWTOP+1
  379. ILST = K2
  380. CALL STGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
  381. $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
  382. $ ZC, LDZC, IFST, ILST, WORK, LWORK,
  383. $ STGEXC_INFO )
  384. K2 = K2+1
  385. END IF
  386. K = K+1
  387. END IF
  388. END DO
  389. END IF
  390. * Store eigenvalues
  391. ND = IHI-KWBOT
  392. NS = JW-ND
  393. K = KWTOP
  394. DO WHILE ( K .LE. IHI )
  395. BULGE = .FALSE.
  396. IF ( K .LT. IHI ) THEN
  397. IF ( A( K+1, K ) .NE. ZERO ) THEN
  398. BULGE = .TRUE.
  399. END IF
  400. END IF
  401. IF ( BULGE ) THEN
  402. * 2x2 eigenvalue block
  403. CALL SLAG2( A( K, K ), LDA, B( K, K ), LDB, SAFMIN,
  404. $ BETA( K ), BETA( K+1 ), ALPHAR( K ),
  405. $ ALPHAR( K+1 ), ALPHAI( K ) )
  406. ALPHAI( K+1 ) = -ALPHAI( K )
  407. K = K+2
  408. ELSE
  409. * 1x1 eigenvalue block
  410. ALPHAR( K ) = A( K, K )
  411. ALPHAI( K ) = ZERO
  412. BETA( K ) = B( K, K )
  413. K = K+1
  414. END IF
  415. END DO
  416. IF ( KWTOP .NE. ILO .AND. S .NE. ZERO ) THEN
  417. * Reflect spike back, this will create optimally packed bulges
  418. A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 )*QC( 1,
  419. $ 1:JW-ND )
  420. DO K = KWBOT-1, KWTOP, -1
  421. CALL SLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1,
  422. $ TEMP )
  423. A( K, KWTOP-1 ) = TEMP
  424. A( K+1, KWTOP-1 ) = ZERO
  425. K2 = MAX( KWTOP, K-1 )
  426. CALL SROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1,
  427. $ S1 )
  428. CALL SROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ),
  429. $ LDB, C1, S1 )
  430. CALL SROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ),
  431. $ 1, C1, S1 )
  432. END DO
  433. * Chase bulges down
  434. ISTARTM = KWTOP
  435. ISTOPM = IHI
  436. K = KWBOT-1
  437. DO WHILE ( K .GE. KWTOP )
  438. IF ( ( K .GE. KWTOP+1 ) .AND. A( K+1, K-1 ) .NE. ZERO ) THEN
  439. * Move double pole block down and remove it
  440. DO K2 = K-1, KWBOT-2
  441. CALL SLAQZ2( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1,
  442. $ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC,
  443. $ LDQC, JW, KWTOP, ZC, LDZC )
  444. END DO
  445. K = K-2
  446. ELSE
  447. * k points to single shift
  448. DO K2 = K, KWBOT-2
  449. * Move shift down
  450. CALL SLARTG( B( K2+1, K2+1 ), B( K2+1, K2 ), C1, S1,
  451. $ TEMP )
  452. B( K2+1, K2+1 ) = TEMP
  453. B( K2+1, K2 ) = ZERO
  454. CALL SROT( K2+2-ISTARTM+1, A( ISTARTM, K2+1 ), 1,
  455. $ A( ISTARTM, K2 ), 1, C1, S1 )
  456. CALL SROT( K2-ISTARTM+1, B( ISTARTM, K2+1 ), 1,
  457. $ B( ISTARTM, K2 ), 1, C1, S1 )
  458. CALL SROT( JW, ZC( 1, K2+1-KWTOP+1 ), 1, ZC( 1,
  459. $ K2-KWTOP+1 ), 1, C1, S1 )
  460. CALL SLARTG( A( K2+1, K2 ), A( K2+2, K2 ), C1, S1,
  461. $ TEMP )
  462. A( K2+1, K2 ) = TEMP
  463. A( K2+2, K2 ) = ZERO
  464. CALL SROT( ISTOPM-K2, A( K2+1, K2+1 ), LDA, A( K2+2,
  465. $ K2+1 ), LDA, C1, S1 )
  466. CALL SROT( ISTOPM-K2, B( K2+1, K2+1 ), LDB, B( K2+2,
  467. $ K2+1 ), LDB, C1, S1 )
  468. CALL SROT( JW, QC( 1, K2+1-KWTOP+1 ), 1, QC( 1,
  469. $ K2+2-KWTOP+1 ), 1, C1, S1 )
  470. END DO
  471. * Remove the shift
  472. CALL SLARTG( B( KWBOT, KWBOT ), B( KWBOT, KWBOT-1 ), C1,
  473. $ S1, TEMP )
  474. B( KWBOT, KWBOT ) = TEMP
  475. B( KWBOT, KWBOT-1 ) = ZERO
  476. CALL SROT( KWBOT-ISTARTM, B( ISTARTM, KWBOT ), 1,
  477. $ B( ISTARTM, KWBOT-1 ), 1, C1, S1 )
  478. CALL SROT( KWBOT-ISTARTM+1, A( ISTARTM, KWBOT ), 1,
  479. $ A( ISTARTM, KWBOT-1 ), 1, C1, S1 )
  480. CALL SROT( JW, ZC( 1, KWBOT-KWTOP+1 ), 1, ZC( 1,
  481. $ KWBOT-1-KWTOP+1 ), 1, C1, S1 )
  482. K = K-1
  483. END IF
  484. END DO
  485. END IF
  486. * Apply Qc and Zc to rest of the matrix
  487. IF ( ILSCHUR ) THEN
  488. ISTARTM = 1
  489. ISTOPM = N
  490. ELSE
  491. ISTARTM = ILO
  492. ISTOPM = IHI
  493. END IF
  494. IF ( ISTOPM-IHI > 0 ) THEN
  495. CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
  496. $ A( KWTOP, IHI+1 ), LDA, ZERO, WORK, JW )
  497. CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP,
  498. $ IHI+1 ), LDA )
  499. CALL SGEMM( 'T', 'N', JW, ISTOPM-IHI, JW, ONE, QC, LDQC,
  500. $ B( KWTOP, IHI+1 ), LDB, ZERO, WORK, JW )
  501. CALL SLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP,
  502. $ IHI+1 ), LDB )
  503. END IF
  504. IF ( ILQ ) THEN
  505. CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Q( 1, KWTOP ), LDQ, QC,
  506. $ LDQC, ZERO, WORK, N )
  507. CALL SLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ )
  508. END IF
  509. IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN
  510. CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, A( ISTARTM,
  511. $ KWTOP ), LDA, ZC, LDZC, ZERO, WORK,
  512. $ KWTOP-ISTARTM )
  513. CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  514. $ A( ISTARTM, KWTOP ), LDA )
  515. CALL SGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, ONE, B( ISTARTM,
  516. $ KWTOP ), LDB, ZC, LDZC, ZERO, WORK,
  517. $ KWTOP-ISTARTM )
  518. CALL SLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  519. $ B( ISTARTM, KWTOP ), LDB )
  520. END IF
  521. IF ( ILZ ) THEN
  522. CALL SGEMM( 'N', 'N', N, JW, JW, ONE, Z( 1, KWTOP ), LDZ, ZC,
  523. $ LDZC, ZERO, WORK, N )
  524. CALL SLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ )
  525. END IF
  526. END SUBROUTINE