You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqz2.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. *> \brief \b SLAQZ2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAQZ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
  22. * $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
  23. * IMPLICIT NONE
  24. *
  25. * Arguments
  26. * LOGICAL, INTENT( IN ) :: ILQ, ILZ
  27. * INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
  28. * $ NQ, NZ, QSTART, ZSTART, IHI
  29. * REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLAQZ2 chases a 2x2 shift bulge in a matrix pencil down a single position
  39. *> \endverbatim
  40. *
  41. *
  42. * Arguments:
  43. * ==========
  44. *
  45. *>
  46. *> \param[in] ILQ
  47. *> \verbatim
  48. *> ILQ is LOGICAL
  49. *> Determines whether or not to update the matrix Q
  50. *> \endverbatim
  51. *>
  52. *> \param[in] ILZ
  53. *> \verbatim
  54. *> ILZ is LOGICAL
  55. *> Determines whether or not to update the matrix Z
  56. *> \endverbatim
  57. *>
  58. *> \param[in] K
  59. *> \verbatim
  60. *> K is INTEGER
  61. *> Index indicating the position of the bulge.
  62. *> On entry, the bulge is located in
  63. *> (A(k+1:k+2,k:k+1),B(k+1:k+2,k:k+1)).
  64. *> On exit, the bulge is located in
  65. *> (A(k+2:k+3,k+1:k+2),B(k+2:k+3,k+1:k+2)).
  66. *> \endverbatim
  67. *>
  68. *> \param[in] ISTARTM
  69. *> \verbatim
  70. *> ISTARTM is INTEGER
  71. *> \endverbatim
  72. *>
  73. *> \param[in] ISTOPM
  74. *> \verbatim
  75. *> ISTOPM is INTEGER
  76. *> Updates to (A,B) are restricted to
  77. *> (istartm:k+3,k:istopm). It is assumed
  78. *> without checking that istartm <= k+1 and
  79. *> k+2 <= istopm
  80. *> \endverbatim
  81. *>
  82. *> \param[in] IHI
  83. *> \verbatim
  84. *> IHI is INTEGER
  85. *> \endverbatim
  86. *>
  87. *> \param[inout] A
  88. *> \verbatim
  89. *> A is REAL array, dimension (LDA,N)
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDA
  93. *> \verbatim
  94. *> LDA is INTEGER
  95. *> The leading dimension of A as declared in
  96. *> the calling procedure.
  97. *> \endverbatim
  98. *
  99. *> \param[inout] B
  100. *> \verbatim
  101. *> B is REAL array, dimension (LDB,N)
  102. *> \endverbatim
  103. *>
  104. *> \param[in] LDB
  105. *> \verbatim
  106. *> LDB is INTEGER
  107. *> The leading dimension of B as declared in
  108. *> the calling procedure.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] NQ
  112. *> \verbatim
  113. *> NQ is INTEGER
  114. *> The order of the matrix Q
  115. *> \endverbatim
  116. *>
  117. *> \param[in] QSTART
  118. *> \verbatim
  119. *> QSTART is INTEGER
  120. *> Start index of the matrix Q. Rotations are applied
  121. *> To columns k+2-qStart:k+4-qStart of Q.
  122. *> \endverbatim
  123. *
  124. *> \param[inout] Q
  125. *> \verbatim
  126. *> Q is REAL array, dimension (LDQ,NQ)
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDQ
  130. *> \verbatim
  131. *> LDQ is INTEGER
  132. *> The leading dimension of Q as declared in
  133. *> the calling procedure.
  134. *> \endverbatim
  135. *>
  136. *> \param[in] NZ
  137. *> \verbatim
  138. *> NZ is INTEGER
  139. *> The order of the matrix Z
  140. *> \endverbatim
  141. *>
  142. *> \param[in] ZSTART
  143. *> \verbatim
  144. *> ZSTART is INTEGER
  145. *> Start index of the matrix Z. Rotations are applied
  146. *> To columns k+1-qStart:k+3-qStart of Z.
  147. *> \endverbatim
  148. *
  149. *> \param[inout] Z
  150. *> \verbatim
  151. *> Z is REAL array, dimension (LDZ,NZ)
  152. *> \endverbatim
  153. *>
  154. *> \param[in] LDZ
  155. *> \verbatim
  156. *> LDZ is INTEGER
  157. *> The leading dimension of Q as declared in
  158. *> the calling procedure.
  159. *> \endverbatim
  160. *
  161. * Authors:
  162. * ========
  163. *
  164. *> \author Thijs Steel, KU Leuven
  165. *
  166. *> \date May 2020
  167. *
  168. *> \ingroup doubleGEcomputational
  169. *>
  170. * =====================================================================
  171. SUBROUTINE SLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
  172. $ LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
  173. IMPLICIT NONE
  174. *
  175. * Arguments
  176. LOGICAL, INTENT( IN ) :: ILQ, ILZ
  177. INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
  178. $ NQ, NZ, QSTART, ZSTART, IHI
  179. REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
  180. *
  181. * Parameters
  182. REAL :: ZERO, ONE, HALF
  183. PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
  184. *
  185. * Local variables
  186. REAL :: H( 2, 3 ), C1, S1, C2, S2, TEMP
  187. *
  188. * External functions
  189. EXTERNAL :: SLARTG, SROT
  190. *
  191. IF( K+2 .EQ. IHI ) THEN
  192. * Shift is located on the edge of the matrix, remove it
  193. H = B( IHI-1:IHI, IHI-2:IHI )
  194. * Make H upper triangular
  195. CALL SLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
  196. H( 2, 1 ) = ZERO
  197. H( 1, 1 ) = TEMP
  198. CALL SROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
  199. *
  200. CALL SLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
  201. CALL SROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
  202. CALL SLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
  203. *
  204. CALL SROT( IHI-ISTARTM+1, B( ISTARTM, IHI ), 1, B( ISTARTM,
  205. $ IHI-1 ), 1, C1, S1 )
  206. CALL SROT( IHI-ISTARTM+1, B( ISTARTM, IHI-1 ), 1, B( ISTARTM,
  207. $ IHI-2 ), 1, C2, S2 )
  208. B( IHI-1, IHI-2 ) = ZERO
  209. B( IHI, IHI-2 ) = ZERO
  210. CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
  211. $ IHI-1 ), 1, C1, S1 )
  212. CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI-1 ), 1, A( ISTARTM,
  213. $ IHI-2 ), 1, C2, S2 )
  214. IF ( ILZ ) THEN
  215. CALL SROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
  216. $ 1 ), 1, C1, S1 )
  217. CALL SROT( NZ, Z( 1, IHI-1-ZSTART+1 ), 1, Z( 1,
  218. $ IHI-2-ZSTART+1 ), 1, C2, S2 )
  219. END IF
  220. *
  221. CALL SLARTG( A( IHI-1, IHI-2 ), A( IHI, IHI-2 ), C1, S1,
  222. $ TEMP )
  223. A( IHI-1, IHI-2 ) = TEMP
  224. A( IHI, IHI-2 ) = ZERO
  225. CALL SROT( ISTOPM-IHI+2, A( IHI-1, IHI-1 ), LDA, A( IHI,
  226. $ IHI-1 ), LDA, C1, S1 )
  227. CALL SROT( ISTOPM-IHI+2, B( IHI-1, IHI-1 ), LDB, B( IHI,
  228. $ IHI-1 ), LDB, C1, S1 )
  229. IF ( ILQ ) THEN
  230. CALL SROT( NQ, Q( 1, IHI-1-QSTART+1 ), 1, Q( 1, IHI-QSTART+
  231. $ 1 ), 1, C1, S1 )
  232. END IF
  233. *
  234. CALL SLARTG( B( IHI, IHI ), B( IHI, IHI-1 ), C1, S1, TEMP )
  235. B( IHI, IHI ) = TEMP
  236. B( IHI, IHI-1 ) = ZERO
  237. CALL SROT( IHI-ISTARTM, B( ISTARTM, IHI ), 1, B( ISTARTM,
  238. $ IHI-1 ), 1, C1, S1 )
  239. CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
  240. $ IHI-1 ), 1, C1, S1 )
  241. IF ( ILZ ) THEN
  242. CALL SROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
  243. $ 1 ), 1, C1, S1 )
  244. END IF
  245. *
  246. ELSE
  247. *
  248. * Normal operation, move bulge down
  249. *
  250. H = B( K+1:K+2, K:K+2 )
  251. *
  252. * Make H upper triangular
  253. *
  254. CALL SLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
  255. H( 2, 1 ) = ZERO
  256. H( 1, 1 ) = TEMP
  257. CALL SROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
  258. *
  259. * Calculate Z1 and Z2
  260. *
  261. CALL SLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
  262. CALL SROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
  263. CALL SLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
  264. *
  265. * Apply transformations from the right
  266. *
  267. CALL SROT( K+3-ISTARTM+1, A( ISTARTM, K+2 ), 1, A( ISTARTM,
  268. $ K+1 ), 1, C1, S1 )
  269. CALL SROT( K+3-ISTARTM+1, A( ISTARTM, K+1 ), 1, A( ISTARTM,
  270. $ K ), 1, C2, S2 )
  271. CALL SROT( K+2-ISTARTM+1, B( ISTARTM, K+2 ), 1, B( ISTARTM,
  272. $ K+1 ), 1, C1, S1 )
  273. CALL SROT( K+2-ISTARTM+1, B( ISTARTM, K+1 ), 1, B( ISTARTM,
  274. $ K ), 1, C2, S2 )
  275. IF ( ILZ ) THEN
  276. CALL SROT( NZ, Z( 1, K+2-ZSTART+1 ), 1, Z( 1, K+1-ZSTART+
  277. $ 1 ), 1, C1, S1 )
  278. CALL SROT( NZ, Z( 1, K+1-ZSTART+1 ), 1, Z( 1, K-ZSTART+1 ),
  279. $ 1, C2, S2 )
  280. END IF
  281. B( K+1, K ) = ZERO
  282. B( K+2, K ) = ZERO
  283. *
  284. * Calculate Q1 and Q2
  285. *
  286. CALL SLARTG( A( K+2, K ), A( K+3, K ), C1, S1, TEMP )
  287. A( K+2, K ) = TEMP
  288. A( K+3, K ) = ZERO
  289. CALL SLARTG( A( K+1, K ), A( K+2, K ), C2, S2, TEMP )
  290. A( K+1, K ) = TEMP
  291. A( K+2, K ) = ZERO
  292. *
  293. * Apply transformations from the left
  294. *
  295. CALL SROT( ISTOPM-K, A( K+2, K+1 ), LDA, A( K+3, K+1 ), LDA,
  296. $ C1, S1 )
  297. CALL SROT( ISTOPM-K, A( K+1, K+1 ), LDA, A( K+2, K+1 ), LDA,
  298. $ C2, S2 )
  299. *
  300. CALL SROT( ISTOPM-K, B( K+2, K+1 ), LDB, B( K+3, K+1 ), LDB,
  301. $ C1, S1 )
  302. CALL SROT( ISTOPM-K, B( K+1, K+1 ), LDB, B( K+2, K+1 ), LDB,
  303. $ C2, S2 )
  304. IF ( ILQ ) THEN
  305. CALL SROT( NQ, Q( 1, K+2-QSTART+1 ), 1, Q( 1, K+3-QSTART+
  306. $ 1 ), 1, C1, S1 )
  307. CALL SROT( NQ, Q( 1, K+1-QSTART+1 ), 1, Q( 1, K+2-QSTART+
  308. $ 1 ), 1, C2, S2 )
  309. END IF
  310. *
  311. END IF
  312. *
  313. * End of SLAQZ2
  314. *
  315. END SUBROUTINE