You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slansf.f 33 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. *> \brief \b SLANSF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANSF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slansf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slansf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slansf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, TRANSR, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * REAL A( 0: * ), WORK( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> SLANSF returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> real symmetric matrix A in RFP format.
  40. *> \endverbatim
  41. *>
  42. *> \return SLANSF
  43. *> \verbatim
  44. *>
  45. *> SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in SLANSF as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] TRANSR
  70. *> \verbatim
  71. *> TRANSR is CHARACTER*1
  72. *> Specifies whether the RFP format of A is normal or
  73. *> transposed format.
  74. *> = 'N': RFP format is Normal;
  75. *> = 'T': RFP format is Transpose.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] UPLO
  79. *> \verbatim
  80. *> UPLO is CHARACTER*1
  81. *> On entry, UPLO specifies whether the RFP matrix A came from
  82. *> an upper or lower triangular matrix as follows:
  83. *> = 'U': RFP A came from an upper triangular matrix;
  84. *> = 'L': RFP A came from a lower triangular matrix.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] N
  88. *> \verbatim
  89. *> N is INTEGER
  90. *> The order of the matrix A. N >= 0. When N = 0, SLANSF is
  91. *> set to zero.
  92. *> \endverbatim
  93. *>
  94. *> \param[in] A
  95. *> \verbatim
  96. *> A is REAL array, dimension ( N*(N+1)/2 );
  97. *> On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
  98. *> part of the symmetric matrix A stored in RFP format. See the
  99. *> "Notes" below for more details.
  100. *> Unchanged on exit.
  101. *> \endverbatim
  102. *>
  103. *> \param[out] WORK
  104. *> \verbatim
  105. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  106. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  107. *> WORK is not referenced.
  108. *> \endverbatim
  109. *
  110. * Authors:
  111. * ========
  112. *
  113. *> \author Univ. of Tennessee
  114. *> \author Univ. of California Berkeley
  115. *> \author Univ. of Colorado Denver
  116. *> \author NAG Ltd.
  117. *
  118. *> \ingroup realOTHERcomputational
  119. *
  120. *> \par Further Details:
  121. * =====================
  122. *>
  123. *> \verbatim
  124. *>
  125. *> We first consider Rectangular Full Packed (RFP) Format when N is
  126. *> even. We give an example where N = 6.
  127. *>
  128. *> AP is Upper AP is Lower
  129. *>
  130. *> 00 01 02 03 04 05 00
  131. *> 11 12 13 14 15 10 11
  132. *> 22 23 24 25 20 21 22
  133. *> 33 34 35 30 31 32 33
  134. *> 44 45 40 41 42 43 44
  135. *> 55 50 51 52 53 54 55
  136. *>
  137. *>
  138. *> Let TRANSR = 'N'. RFP holds AP as follows:
  139. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  140. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  141. *> the transpose of the first three columns of AP upper.
  142. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  143. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  144. *> the transpose of the last three columns of AP lower.
  145. *> This covers the case N even and TRANSR = 'N'.
  146. *>
  147. *> RFP A RFP A
  148. *>
  149. *> 03 04 05 33 43 53
  150. *> 13 14 15 00 44 54
  151. *> 23 24 25 10 11 55
  152. *> 33 34 35 20 21 22
  153. *> 00 44 45 30 31 32
  154. *> 01 11 55 40 41 42
  155. *> 02 12 22 50 51 52
  156. *>
  157. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  158. *> transpose of RFP A above. One therefore gets:
  159. *>
  160. *>
  161. *> RFP A RFP A
  162. *>
  163. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  164. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  165. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  166. *>
  167. *>
  168. *> We then consider Rectangular Full Packed (RFP) Format when N is
  169. *> odd. We give an example where N = 5.
  170. *>
  171. *> AP is Upper AP is Lower
  172. *>
  173. *> 00 01 02 03 04 00
  174. *> 11 12 13 14 10 11
  175. *> 22 23 24 20 21 22
  176. *> 33 34 30 31 32 33
  177. *> 44 40 41 42 43 44
  178. *>
  179. *>
  180. *> Let TRANSR = 'N'. RFP holds AP as follows:
  181. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  182. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  183. *> the transpose of the first two columns of AP upper.
  184. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  185. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  186. *> the transpose of the last two columns of AP lower.
  187. *> This covers the case N odd and TRANSR = 'N'.
  188. *>
  189. *> RFP A RFP A
  190. *>
  191. *> 02 03 04 00 33 43
  192. *> 12 13 14 10 11 44
  193. *> 22 23 24 20 21 22
  194. *> 00 33 34 30 31 32
  195. *> 01 11 44 40 41 42
  196. *>
  197. *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
  198. *> transpose of RFP A above. One therefore gets:
  199. *>
  200. *> RFP A RFP A
  201. *>
  202. *> 02 12 22 00 01 00 10 20 30 40 50
  203. *> 03 13 23 33 11 33 11 21 31 41 51
  204. *> 04 14 24 34 44 43 44 22 32 42 52
  205. *> \endverbatim
  206. *
  207. * =====================================================================
  208. REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
  209. *
  210. * -- LAPACK computational routine --
  211. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  212. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  213. *
  214. * .. Scalar Arguments ..
  215. CHARACTER NORM, TRANSR, UPLO
  216. INTEGER N
  217. * ..
  218. * .. Array Arguments ..
  219. REAL A( 0: * ), WORK( 0: * )
  220. * ..
  221. *
  222. * =====================================================================
  223. *
  224. * ..
  225. * .. Parameters ..
  226. REAL ONE, ZERO
  227. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  228. * ..
  229. * .. Local Scalars ..
  230. INTEGER I, J, IFM, ILU, NOE, N1, K, L, LDA
  231. REAL SCALE, S, VALUE, AA, TEMP
  232. * ..
  233. * .. External Functions ..
  234. LOGICAL LSAME, SISNAN
  235. EXTERNAL LSAME, SISNAN
  236. * ..
  237. * .. External Subroutines ..
  238. EXTERNAL SLASSQ
  239. * ..
  240. * .. Intrinsic Functions ..
  241. INTRINSIC ABS, SQRT
  242. * ..
  243. * .. Executable Statements ..
  244. *
  245. IF( N.EQ.0 ) THEN
  246. SLANSF = ZERO
  247. RETURN
  248. ELSE IF( N.EQ.1 ) THEN
  249. SLANSF = ABS( A(0) )
  250. RETURN
  251. END IF
  252. *
  253. * set noe = 1 if n is odd. if n is even set noe=0
  254. *
  255. NOE = 1
  256. IF( MOD( N, 2 ).EQ.0 )
  257. $ NOE = 0
  258. *
  259. * set ifm = 0 when form='T or 't' and 1 otherwise
  260. *
  261. IFM = 1
  262. IF( LSAME( TRANSR, 'T' ) )
  263. $ IFM = 0
  264. *
  265. * set ilu = 0 when uplo='U or 'u' and 1 otherwise
  266. *
  267. ILU = 1
  268. IF( LSAME( UPLO, 'U' ) )
  269. $ ILU = 0
  270. *
  271. * set lda = (n+1)/2 when ifm = 0
  272. * set lda = n when ifm = 1 and noe = 1
  273. * set lda = n+1 when ifm = 1 and noe = 0
  274. *
  275. IF( IFM.EQ.1 ) THEN
  276. IF( NOE.EQ.1 ) THEN
  277. LDA = N
  278. ELSE
  279. * noe=0
  280. LDA = N + 1
  281. END IF
  282. ELSE
  283. * ifm=0
  284. LDA = ( N+1 ) / 2
  285. END IF
  286. *
  287. IF( LSAME( NORM, 'M' ) ) THEN
  288. *
  289. * Find max(abs(A(i,j))).
  290. *
  291. K = ( N+1 ) / 2
  292. VALUE = ZERO
  293. IF( NOE.EQ.1 ) THEN
  294. * n is odd
  295. IF( IFM.EQ.1 ) THEN
  296. * A is n by k
  297. DO J = 0, K - 1
  298. DO I = 0, N - 1
  299. TEMP = ABS( A( I+J*LDA ) )
  300. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  301. $ VALUE = TEMP
  302. END DO
  303. END DO
  304. ELSE
  305. * xpose case; A is k by n
  306. DO J = 0, N - 1
  307. DO I = 0, K - 1
  308. TEMP = ABS( A( I+J*LDA ) )
  309. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  310. $ VALUE = TEMP
  311. END DO
  312. END DO
  313. END IF
  314. ELSE
  315. * n is even
  316. IF( IFM.EQ.1 ) THEN
  317. * A is n+1 by k
  318. DO J = 0, K - 1
  319. DO I = 0, N
  320. TEMP = ABS( A( I+J*LDA ) )
  321. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  322. $ VALUE = TEMP
  323. END DO
  324. END DO
  325. ELSE
  326. * xpose case; A is k by n+1
  327. DO J = 0, N
  328. DO I = 0, K - 1
  329. TEMP = ABS( A( I+J*LDA ) )
  330. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  331. $ VALUE = TEMP
  332. END DO
  333. END DO
  334. END IF
  335. END IF
  336. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  337. $ ( NORM.EQ.'1' ) ) THEN
  338. *
  339. * Find normI(A) ( = norm1(A), since A is symmetric).
  340. *
  341. IF( IFM.EQ.1 ) THEN
  342. K = N / 2
  343. IF( NOE.EQ.1 ) THEN
  344. * n is odd
  345. IF( ILU.EQ.0 ) THEN
  346. DO I = 0, K - 1
  347. WORK( I ) = ZERO
  348. END DO
  349. DO J = 0, K
  350. S = ZERO
  351. DO I = 0, K + J - 1
  352. AA = ABS( A( I+J*LDA ) )
  353. * -> A(i,j+k)
  354. S = S + AA
  355. WORK( I ) = WORK( I ) + AA
  356. END DO
  357. AA = ABS( A( I+J*LDA ) )
  358. * -> A(j+k,j+k)
  359. WORK( J+K ) = S + AA
  360. IF( I.EQ.K+K )
  361. $ GO TO 10
  362. I = I + 1
  363. AA = ABS( A( I+J*LDA ) )
  364. * -> A(j,j)
  365. WORK( J ) = WORK( J ) + AA
  366. S = ZERO
  367. DO L = J + 1, K - 1
  368. I = I + 1
  369. AA = ABS( A( I+J*LDA ) )
  370. * -> A(l,j)
  371. S = S + AA
  372. WORK( L ) = WORK( L ) + AA
  373. END DO
  374. WORK( J ) = WORK( J ) + S
  375. END DO
  376. 10 CONTINUE
  377. VALUE = WORK( 0 )
  378. DO I = 1, N-1
  379. TEMP = WORK( I )
  380. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  381. $ VALUE = TEMP
  382. END DO
  383. ELSE
  384. * ilu = 1
  385. K = K + 1
  386. * k=(n+1)/2 for n odd and ilu=1
  387. DO I = K, N - 1
  388. WORK( I ) = ZERO
  389. END DO
  390. DO J = K - 1, 0, -1
  391. S = ZERO
  392. DO I = 0, J - 2
  393. AA = ABS( A( I+J*LDA ) )
  394. * -> A(j+k,i+k)
  395. S = S + AA
  396. WORK( I+K ) = WORK( I+K ) + AA
  397. END DO
  398. IF( J.GT.0 ) THEN
  399. AA = ABS( A( I+J*LDA ) )
  400. * -> A(j+k,j+k)
  401. S = S + AA
  402. WORK( I+K ) = WORK( I+K ) + S
  403. * i=j
  404. I = I + 1
  405. END IF
  406. AA = ABS( A( I+J*LDA ) )
  407. * -> A(j,j)
  408. WORK( J ) = AA
  409. S = ZERO
  410. DO L = J + 1, N - 1
  411. I = I + 1
  412. AA = ABS( A( I+J*LDA ) )
  413. * -> A(l,j)
  414. S = S + AA
  415. WORK( L ) = WORK( L ) + AA
  416. END DO
  417. WORK( J ) = WORK( J ) + S
  418. END DO
  419. VALUE = WORK( 0 )
  420. DO I = 1, N-1
  421. TEMP = WORK( I )
  422. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  423. $ VALUE = TEMP
  424. END DO
  425. END IF
  426. ELSE
  427. * n is even
  428. IF( ILU.EQ.0 ) THEN
  429. DO I = 0, K - 1
  430. WORK( I ) = ZERO
  431. END DO
  432. DO J = 0, K - 1
  433. S = ZERO
  434. DO I = 0, K + J - 1
  435. AA = ABS( A( I+J*LDA ) )
  436. * -> A(i,j+k)
  437. S = S + AA
  438. WORK( I ) = WORK( I ) + AA
  439. END DO
  440. AA = ABS( A( I+J*LDA ) )
  441. * -> A(j+k,j+k)
  442. WORK( J+K ) = S + AA
  443. I = I + 1
  444. AA = ABS( A( I+J*LDA ) )
  445. * -> A(j,j)
  446. WORK( J ) = WORK( J ) + AA
  447. S = ZERO
  448. DO L = J + 1, K - 1
  449. I = I + 1
  450. AA = ABS( A( I+J*LDA ) )
  451. * -> A(l,j)
  452. S = S + AA
  453. WORK( L ) = WORK( L ) + AA
  454. END DO
  455. WORK( J ) = WORK( J ) + S
  456. END DO
  457. VALUE = WORK( 0 )
  458. DO I = 1, N-1
  459. TEMP = WORK( I )
  460. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  461. $ VALUE = TEMP
  462. END DO
  463. ELSE
  464. * ilu = 1
  465. DO I = K, N - 1
  466. WORK( I ) = ZERO
  467. END DO
  468. DO J = K - 1, 0, -1
  469. S = ZERO
  470. DO I = 0, J - 1
  471. AA = ABS( A( I+J*LDA ) )
  472. * -> A(j+k,i+k)
  473. S = S + AA
  474. WORK( I+K ) = WORK( I+K ) + AA
  475. END DO
  476. AA = ABS( A( I+J*LDA ) )
  477. * -> A(j+k,j+k)
  478. S = S + AA
  479. WORK( I+K ) = WORK( I+K ) + S
  480. * i=j
  481. I = I + 1
  482. AA = ABS( A( I+J*LDA ) )
  483. * -> A(j,j)
  484. WORK( J ) = AA
  485. S = ZERO
  486. DO L = J + 1, N - 1
  487. I = I + 1
  488. AA = ABS( A( I+J*LDA ) )
  489. * -> A(l,j)
  490. S = S + AA
  491. WORK( L ) = WORK( L ) + AA
  492. END DO
  493. WORK( J ) = WORK( J ) + S
  494. END DO
  495. VALUE = WORK( 0 )
  496. DO I = 1, N-1
  497. TEMP = WORK( I )
  498. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  499. $ VALUE = TEMP
  500. END DO
  501. END IF
  502. END IF
  503. ELSE
  504. * ifm=0
  505. K = N / 2
  506. IF( NOE.EQ.1 ) THEN
  507. * n is odd
  508. IF( ILU.EQ.0 ) THEN
  509. N1 = K
  510. * n/2
  511. K = K + 1
  512. * k is the row size and lda
  513. DO I = N1, N - 1
  514. WORK( I ) = ZERO
  515. END DO
  516. DO J = 0, N1 - 1
  517. S = ZERO
  518. DO I = 0, K - 1
  519. AA = ABS( A( I+J*LDA ) )
  520. * A(j,n1+i)
  521. WORK( I+N1 ) = WORK( I+N1 ) + AA
  522. S = S + AA
  523. END DO
  524. WORK( J ) = S
  525. END DO
  526. * j=n1=k-1 is special
  527. S = ABS( A( 0+J*LDA ) )
  528. * A(k-1,k-1)
  529. DO I = 1, K - 1
  530. AA = ABS( A( I+J*LDA ) )
  531. * A(k-1,i+n1)
  532. WORK( I+N1 ) = WORK( I+N1 ) + AA
  533. S = S + AA
  534. END DO
  535. WORK( J ) = WORK( J ) + S
  536. DO J = K, N - 1
  537. S = ZERO
  538. DO I = 0, J - K - 1
  539. AA = ABS( A( I+J*LDA ) )
  540. * A(i,j-k)
  541. WORK( I ) = WORK( I ) + AA
  542. S = S + AA
  543. END DO
  544. * i=j-k
  545. AA = ABS( A( I+J*LDA ) )
  546. * A(j-k,j-k)
  547. S = S + AA
  548. WORK( J-K ) = WORK( J-K ) + S
  549. I = I + 1
  550. S = ABS( A( I+J*LDA ) )
  551. * A(j,j)
  552. DO L = J + 1, N - 1
  553. I = I + 1
  554. AA = ABS( A( I+J*LDA ) )
  555. * A(j,l)
  556. WORK( L ) = WORK( L ) + AA
  557. S = S + AA
  558. END DO
  559. WORK( J ) = WORK( J ) + S
  560. END DO
  561. VALUE = WORK( 0 )
  562. DO I = 1, N-1
  563. TEMP = WORK( I )
  564. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  565. $ VALUE = TEMP
  566. END DO
  567. ELSE
  568. * ilu=1
  569. K = K + 1
  570. * k=(n+1)/2 for n odd and ilu=1
  571. DO I = K, N - 1
  572. WORK( I ) = ZERO
  573. END DO
  574. DO J = 0, K - 2
  575. * process
  576. S = ZERO
  577. DO I = 0, J - 1
  578. AA = ABS( A( I+J*LDA ) )
  579. * A(j,i)
  580. WORK( I ) = WORK( I ) + AA
  581. S = S + AA
  582. END DO
  583. AA = ABS( A( I+J*LDA ) )
  584. * i=j so process of A(j,j)
  585. S = S + AA
  586. WORK( J ) = S
  587. * is initialised here
  588. I = I + 1
  589. * i=j process A(j+k,j+k)
  590. AA = ABS( A( I+J*LDA ) )
  591. S = AA
  592. DO L = K + J + 1, N - 1
  593. I = I + 1
  594. AA = ABS( A( I+J*LDA ) )
  595. * A(l,k+j)
  596. S = S + AA
  597. WORK( L ) = WORK( L ) + AA
  598. END DO
  599. WORK( K+J ) = WORK( K+J ) + S
  600. END DO
  601. * j=k-1 is special :process col A(k-1,0:k-1)
  602. S = ZERO
  603. DO I = 0, K - 2
  604. AA = ABS( A( I+J*LDA ) )
  605. * A(k,i)
  606. WORK( I ) = WORK( I ) + AA
  607. S = S + AA
  608. END DO
  609. * i=k-1
  610. AA = ABS( A( I+J*LDA ) )
  611. * A(k-1,k-1)
  612. S = S + AA
  613. WORK( I ) = S
  614. * done with col j=k+1
  615. DO J = K, N - 1
  616. * process col j of A = A(j,0:k-1)
  617. S = ZERO
  618. DO I = 0, K - 1
  619. AA = ABS( A( I+J*LDA ) )
  620. * A(j,i)
  621. WORK( I ) = WORK( I ) + AA
  622. S = S + AA
  623. END DO
  624. WORK( J ) = WORK( J ) + S
  625. END DO
  626. VALUE = WORK( 0 )
  627. DO I = 1, N-1
  628. TEMP = WORK( I )
  629. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  630. $ VALUE = TEMP
  631. END DO
  632. END IF
  633. ELSE
  634. * n is even
  635. IF( ILU.EQ.0 ) THEN
  636. DO I = K, N - 1
  637. WORK( I ) = ZERO
  638. END DO
  639. DO J = 0, K - 1
  640. S = ZERO
  641. DO I = 0, K - 1
  642. AA = ABS( A( I+J*LDA ) )
  643. * A(j,i+k)
  644. WORK( I+K ) = WORK( I+K ) + AA
  645. S = S + AA
  646. END DO
  647. WORK( J ) = S
  648. END DO
  649. * j=k
  650. AA = ABS( A( 0+J*LDA ) )
  651. * A(k,k)
  652. S = AA
  653. DO I = 1, K - 1
  654. AA = ABS( A( I+J*LDA ) )
  655. * A(k,k+i)
  656. WORK( I+K ) = WORK( I+K ) + AA
  657. S = S + AA
  658. END DO
  659. WORK( J ) = WORK( J ) + S
  660. DO J = K + 1, N - 1
  661. S = ZERO
  662. DO I = 0, J - 2 - K
  663. AA = ABS( A( I+J*LDA ) )
  664. * A(i,j-k-1)
  665. WORK( I ) = WORK( I ) + AA
  666. S = S + AA
  667. END DO
  668. * i=j-1-k
  669. AA = ABS( A( I+J*LDA ) )
  670. * A(j-k-1,j-k-1)
  671. S = S + AA
  672. WORK( J-K-1 ) = WORK( J-K-1 ) + S
  673. I = I + 1
  674. AA = ABS( A( I+J*LDA ) )
  675. * A(j,j)
  676. S = AA
  677. DO L = J + 1, N - 1
  678. I = I + 1
  679. AA = ABS( A( I+J*LDA ) )
  680. * A(j,l)
  681. WORK( L ) = WORK( L ) + AA
  682. S = S + AA
  683. END DO
  684. WORK( J ) = WORK( J ) + S
  685. END DO
  686. * j=n
  687. S = ZERO
  688. DO I = 0, K - 2
  689. AA = ABS( A( I+J*LDA ) )
  690. * A(i,k-1)
  691. WORK( I ) = WORK( I ) + AA
  692. S = S + AA
  693. END DO
  694. * i=k-1
  695. AA = ABS( A( I+J*LDA ) )
  696. * A(k-1,k-1)
  697. S = S + AA
  698. WORK( I ) = WORK( I ) + S
  699. VALUE = WORK ( 0 )
  700. DO I = 1, N-1
  701. TEMP = WORK( I )
  702. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  703. $ VALUE = TEMP
  704. END DO
  705. ELSE
  706. * ilu=1
  707. DO I = K, N - 1
  708. WORK( I ) = ZERO
  709. END DO
  710. * j=0 is special :process col A(k:n-1,k)
  711. S = ABS( A( 0 ) )
  712. * A(k,k)
  713. DO I = 1, K - 1
  714. AA = ABS( A( I ) )
  715. * A(k+i,k)
  716. WORK( I+K ) = WORK( I+K ) + AA
  717. S = S + AA
  718. END DO
  719. WORK( K ) = WORK( K ) + S
  720. DO J = 1, K - 1
  721. * process
  722. S = ZERO
  723. DO I = 0, J - 2
  724. AA = ABS( A( I+J*LDA ) )
  725. * A(j-1,i)
  726. WORK( I ) = WORK( I ) + AA
  727. S = S + AA
  728. END DO
  729. AA = ABS( A( I+J*LDA ) )
  730. * i=j-1 so process of A(j-1,j-1)
  731. S = S + AA
  732. WORK( J-1 ) = S
  733. * is initialised here
  734. I = I + 1
  735. * i=j process A(j+k,j+k)
  736. AA = ABS( A( I+J*LDA ) )
  737. S = AA
  738. DO L = K + J + 1, N - 1
  739. I = I + 1
  740. AA = ABS( A( I+J*LDA ) )
  741. * A(l,k+j)
  742. S = S + AA
  743. WORK( L ) = WORK( L ) + AA
  744. END DO
  745. WORK( K+J ) = WORK( K+J ) + S
  746. END DO
  747. * j=k is special :process col A(k,0:k-1)
  748. S = ZERO
  749. DO I = 0, K - 2
  750. AA = ABS( A( I+J*LDA ) )
  751. * A(k,i)
  752. WORK( I ) = WORK( I ) + AA
  753. S = S + AA
  754. END DO
  755. * i=k-1
  756. AA = ABS( A( I+J*LDA ) )
  757. * A(k-1,k-1)
  758. S = S + AA
  759. WORK( I ) = S
  760. * done with col j=k+1
  761. DO J = K + 1, N
  762. * process col j-1 of A = A(j-1,0:k-1)
  763. S = ZERO
  764. DO I = 0, K - 1
  765. AA = ABS( A( I+J*LDA ) )
  766. * A(j-1,i)
  767. WORK( I ) = WORK( I ) + AA
  768. S = S + AA
  769. END DO
  770. WORK( J-1 ) = WORK( J-1 ) + S
  771. END DO
  772. VALUE = WORK( 0 )
  773. DO I = 1, N-1
  774. TEMP = WORK( I )
  775. IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
  776. $ VALUE = TEMP
  777. END DO
  778. END IF
  779. END IF
  780. END IF
  781. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  782. *
  783. * Find normF(A).
  784. *
  785. K = ( N+1 ) / 2
  786. SCALE = ZERO
  787. S = ONE
  788. IF( NOE.EQ.1 ) THEN
  789. * n is odd
  790. IF( IFM.EQ.1 ) THEN
  791. * A is normal
  792. IF( ILU.EQ.0 ) THEN
  793. * A is upper
  794. DO J = 0, K - 3
  795. CALL SLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
  796. * L at A(k,0)
  797. END DO
  798. DO J = 0, K - 1
  799. CALL SLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
  800. * trap U at A(0,0)
  801. END DO
  802. S = S + S
  803. * double s for the off diagonal elements
  804. CALL SLASSQ( K-1, A( K ), LDA+1, SCALE, S )
  805. * tri L at A(k,0)
  806. CALL SLASSQ( K, A( K-1 ), LDA+1, SCALE, S )
  807. * tri U at A(k-1,0)
  808. ELSE
  809. * ilu=1 & A is lower
  810. DO J = 0, K - 1
  811. CALL SLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
  812. * trap L at A(0,0)
  813. END DO
  814. DO J = 0, K - 2
  815. CALL SLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
  816. * U at A(0,1)
  817. END DO
  818. S = S + S
  819. * double s for the off diagonal elements
  820. CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
  821. * tri L at A(0,0)
  822. CALL SLASSQ( K-1, A( 0+LDA ), LDA+1, SCALE, S )
  823. * tri U at A(0,1)
  824. END IF
  825. ELSE
  826. * A is xpose
  827. IF( ILU.EQ.0 ) THEN
  828. * A**T is upper
  829. DO J = 1, K - 2
  830. CALL SLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
  831. * U at A(0,k)
  832. END DO
  833. DO J = 0, K - 2
  834. CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
  835. * k by k-1 rect. at A(0,0)
  836. END DO
  837. DO J = 0, K - 2
  838. CALL SLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
  839. $ SCALE, S )
  840. * L at A(0,k-1)
  841. END DO
  842. S = S + S
  843. * double s for the off diagonal elements
  844. CALL SLASSQ( K-1, A( 0+K*LDA ), LDA+1, SCALE, S )
  845. * tri U at A(0,k)
  846. CALL SLASSQ( K, A( 0+( K-1 )*LDA ), LDA+1, SCALE, S )
  847. * tri L at A(0,k-1)
  848. ELSE
  849. * A**T is lower
  850. DO J = 1, K - 1
  851. CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
  852. * U at A(0,0)
  853. END DO
  854. DO J = K, N - 1
  855. CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
  856. * k by k-1 rect. at A(0,k)
  857. END DO
  858. DO J = 0, K - 3
  859. CALL SLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
  860. * L at A(1,0)
  861. END DO
  862. S = S + S
  863. * double s for the off diagonal elements
  864. CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
  865. * tri U at A(0,0)
  866. CALL SLASSQ( K-1, A( 1 ), LDA+1, SCALE, S )
  867. * tri L at A(1,0)
  868. END IF
  869. END IF
  870. ELSE
  871. * n is even
  872. IF( IFM.EQ.1 ) THEN
  873. * A is normal
  874. IF( ILU.EQ.0 ) THEN
  875. * A is upper
  876. DO J = 0, K - 2
  877. CALL SLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
  878. * L at A(k+1,0)
  879. END DO
  880. DO J = 0, K - 1
  881. CALL SLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
  882. * trap U at A(0,0)
  883. END DO
  884. S = S + S
  885. * double s for the off diagonal elements
  886. CALL SLASSQ( K, A( K+1 ), LDA+1, SCALE, S )
  887. * tri L at A(k+1,0)
  888. CALL SLASSQ( K, A( K ), LDA+1, SCALE, S )
  889. * tri U at A(k,0)
  890. ELSE
  891. * ilu=1 & A is lower
  892. DO J = 0, K - 1
  893. CALL SLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
  894. * trap L at A(1,0)
  895. END DO
  896. DO J = 1, K - 1
  897. CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
  898. * U at A(0,0)
  899. END DO
  900. S = S + S
  901. * double s for the off diagonal elements
  902. CALL SLASSQ( K, A( 1 ), LDA+1, SCALE, S )
  903. * tri L at A(1,0)
  904. CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
  905. * tri U at A(0,0)
  906. END IF
  907. ELSE
  908. * A is xpose
  909. IF( ILU.EQ.0 ) THEN
  910. * A**T is upper
  911. DO J = 1, K - 1
  912. CALL SLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
  913. * U at A(0,k+1)
  914. END DO
  915. DO J = 0, K - 1
  916. CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
  917. * k by k rect. at A(0,0)
  918. END DO
  919. DO J = 0, K - 2
  920. CALL SLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
  921. $ S )
  922. * L at A(0,k)
  923. END DO
  924. S = S + S
  925. * double s for the off diagonal elements
  926. CALL SLASSQ( K, A( 0+( K+1 )*LDA ), LDA+1, SCALE, S )
  927. * tri U at A(0,k+1)
  928. CALL SLASSQ( K, A( 0+K*LDA ), LDA+1, SCALE, S )
  929. * tri L at A(0,k)
  930. ELSE
  931. * A**T is lower
  932. DO J = 1, K - 1
  933. CALL SLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
  934. * U at A(0,1)
  935. END DO
  936. DO J = K + 1, N
  937. CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
  938. * k by k rect. at A(0,k+1)
  939. END DO
  940. DO J = 0, K - 2
  941. CALL SLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
  942. * L at A(0,0)
  943. END DO
  944. S = S + S
  945. * double s for the off diagonal elements
  946. CALL SLASSQ( K, A( LDA ), LDA+1, SCALE, S )
  947. * tri L at A(0,1)
  948. CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
  949. * tri U at A(0,0)
  950. END IF
  951. END IF
  952. END IF
  953. VALUE = SCALE*SQRT( S )
  954. END IF
  955. *
  956. SLANSF = VALUE
  957. RETURN
  958. *
  959. * End of SLANSF
  960. *
  961. END