You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgeev.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. *> \brief <b> SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGEEV + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeev.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeev.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeev.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  22. * LDVR, WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER JOBVL, JOBVR
  26. * INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  30. * $ WI( * ), WORK( * ), WR( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SGEEV computes for an N-by-N real nonsymmetric matrix A, the
  40. *> eigenvalues and, optionally, the left and/or right eigenvectors.
  41. *>
  42. *> The right eigenvector v(j) of A satisfies
  43. *> A * v(j) = lambda(j) * v(j)
  44. *> where lambda(j) is its eigenvalue.
  45. *> The left eigenvector u(j) of A satisfies
  46. *> u(j)**H * A = lambda(j) * u(j)**H
  47. *> where u(j)**H denotes the conjugate-transpose of u(j).
  48. *>
  49. *> The computed eigenvectors are normalized to have Euclidean norm
  50. *> equal to 1 and largest component real.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] JOBVL
  57. *> \verbatim
  58. *> JOBVL is CHARACTER*1
  59. *> = 'N': left eigenvectors of A are not computed;
  60. *> = 'V': left eigenvectors of A are computed.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] JOBVR
  64. *> \verbatim
  65. *> JOBVR is CHARACTER*1
  66. *> = 'N': right eigenvectors of A are not computed;
  67. *> = 'V': right eigenvectors of A are computed.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] N
  71. *> \verbatim
  72. *> N is INTEGER
  73. *> The order of the matrix A. N >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in,out] A
  77. *> \verbatim
  78. *> A is REAL array, dimension (LDA,N)
  79. *> On entry, the N-by-N matrix A.
  80. *> On exit, A has been overwritten.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] WR
  90. *> \verbatim
  91. *> WR is REAL array, dimension (N)
  92. *> \endverbatim
  93. *>
  94. *> \param[out] WI
  95. *> \verbatim
  96. *> WI is REAL array, dimension (N)
  97. *> WR and WI contain the real and imaginary parts,
  98. *> respectively, of the computed eigenvalues. Complex
  99. *> conjugate pairs of eigenvalues appear consecutively
  100. *> with the eigenvalue having the positive imaginary part
  101. *> first.
  102. *> \endverbatim
  103. *>
  104. *> \param[out] VL
  105. *> \verbatim
  106. *> VL is REAL array, dimension (LDVL,N)
  107. *> If JOBVL = 'V', the left eigenvectors u(j) are stored one
  108. *> after another in the columns of VL, in the same order
  109. *> as their eigenvalues.
  110. *> If JOBVL = 'N', VL is not referenced.
  111. *> If the j-th eigenvalue is real, then u(j) = VL(:,j),
  112. *> the j-th column of VL.
  113. *> If the j-th and (j+1)-st eigenvalues form a complex
  114. *> conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
  115. *> u(j+1) = VL(:,j) - i*VL(:,j+1).
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDVL
  119. *> \verbatim
  120. *> LDVL is INTEGER
  121. *> The leading dimension of the array VL. LDVL >= 1; if
  122. *> JOBVL = 'V', LDVL >= N.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] VR
  126. *> \verbatim
  127. *> VR is REAL array, dimension (LDVR,N)
  128. *> If JOBVR = 'V', the right eigenvectors v(j) are stored one
  129. *> after another in the columns of VR, in the same order
  130. *> as their eigenvalues.
  131. *> If JOBVR = 'N', VR is not referenced.
  132. *> If the j-th eigenvalue is real, then v(j) = VR(:,j),
  133. *> the j-th column of VR.
  134. *> If the j-th and (j+1)-st eigenvalues form a complex
  135. *> conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
  136. *> v(j+1) = VR(:,j) - i*VR(:,j+1).
  137. *> \endverbatim
  138. *>
  139. *> \param[in] LDVR
  140. *> \verbatim
  141. *> LDVR is INTEGER
  142. *> The leading dimension of the array VR. LDVR >= 1; if
  143. *> JOBVR = 'V', LDVR >= N.
  144. *> \endverbatim
  145. *>
  146. *> \param[out] WORK
  147. *> \verbatim
  148. *> WORK is REAL array, dimension (MAX(1,LWORK))
  149. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  150. *> \endverbatim
  151. *>
  152. *> \param[in] LWORK
  153. *> \verbatim
  154. *> LWORK is INTEGER
  155. *> The dimension of the array WORK. LWORK >= max(1,3*N), and
  156. *> if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good
  157. *> performance, LWORK must generally be larger.
  158. *>
  159. *> If LWORK = -1, then a workspace query is assumed; the routine
  160. *> only calculates the optimal size of the WORK array, returns
  161. *> this value as the first entry of the WORK array, and no error
  162. *> message related to LWORK is issued by XERBLA.
  163. *> \endverbatim
  164. *>
  165. *> \param[out] INFO
  166. *> \verbatim
  167. *> INFO is INTEGER
  168. *> = 0: successful exit
  169. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  170. *> > 0: if INFO = i, the QR algorithm failed to compute all the
  171. *> eigenvalues, and no eigenvectors have been computed;
  172. *> elements i+1:N of WR and WI contain eigenvalues which
  173. *> have converged.
  174. *> \endverbatim
  175. *
  176. * Authors:
  177. * ========
  178. *
  179. *> \author Univ. of Tennessee
  180. *> \author Univ. of California Berkeley
  181. *> \author Univ. of Colorado Denver
  182. *> \author NAG Ltd.
  183. *
  184. *
  185. * @generated from dgeev.f, fortran d -> s, Tue Apr 19 01:47:44 2016
  186. *
  187. *> \ingroup geev
  188. *
  189. * =====================================================================
  190. SUBROUTINE SGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
  191. $ LDVR, WORK, LWORK, INFO )
  192. implicit none
  193. *
  194. * -- LAPACK driver routine --
  195. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  196. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  197. *
  198. * .. Scalar Arguments ..
  199. CHARACTER JOBVL, JOBVR
  200. INTEGER INFO, LDA, LDVL, LDVR, LWORK, N
  201. * ..
  202. * .. Array Arguments ..
  203. REAL A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
  204. $ WI( * ), WORK( * ), WR( * )
  205. * ..
  206. *
  207. * =====================================================================
  208. *
  209. * .. Parameters ..
  210. REAL ZERO, ONE
  211. PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
  212. * ..
  213. * .. Local Scalars ..
  214. LOGICAL LQUERY, SCALEA, WANTVL, WANTVR
  215. CHARACTER SIDE
  216. INTEGER HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
  217. $ LWORK_TREVC, MAXWRK, MINWRK, NOUT
  218. REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
  219. $ SN
  220. * ..
  221. * .. Local Arrays ..
  222. LOGICAL SELECT( 1 )
  223. REAL DUM( 1 )
  224. * ..
  225. * .. External Subroutines ..
  226. EXTERNAL SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLACPY, SLARTG,
  227. $ SLASCL, SORGHR, SROT, SSCAL, STREVC3, XERBLA
  228. * ..
  229. * .. External Functions ..
  230. LOGICAL LSAME
  231. INTEGER ISAMAX, ILAENV
  232. REAL SLAMCH, SLANGE, SLAPY2, SNRM2, SROUNDUP_LWORK
  233. EXTERNAL LSAME, ISAMAX, ILAENV, SLAMCH, SLANGE, SLAPY2,
  234. $ SNRM2, SROUNDUP_LWORK
  235. * ..
  236. * .. Intrinsic Functions ..
  237. INTRINSIC MAX, SQRT
  238. * ..
  239. * .. Executable Statements ..
  240. *
  241. * Test the input arguments
  242. *
  243. INFO = 0
  244. LQUERY = ( LWORK.EQ.-1 )
  245. WANTVL = LSAME( JOBVL, 'V' )
  246. WANTVR = LSAME( JOBVR, 'V' )
  247. IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
  248. INFO = -1
  249. ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
  250. INFO = -2
  251. ELSE IF( N.LT.0 ) THEN
  252. INFO = -3
  253. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  254. INFO = -5
  255. ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
  256. INFO = -9
  257. ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
  258. INFO = -11
  259. END IF
  260. *
  261. * Compute workspace
  262. * (Note: Comments in the code beginning "Workspace:" describe the
  263. * minimal amount of workspace needed at that point in the code,
  264. * as well as the preferred amount for good performance.
  265. * NB refers to the optimal block size for the immediately
  266. * following subroutine, as returned by ILAENV.
  267. * HSWORK refers to the workspace preferred by SHSEQR, as
  268. * calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
  269. * the worst case.)
  270. *
  271. IF( INFO.EQ.0 ) THEN
  272. IF( N.EQ.0 ) THEN
  273. MINWRK = 1
  274. MAXWRK = 1
  275. ELSE
  276. MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
  277. IF( WANTVL ) THEN
  278. MINWRK = 4*N
  279. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  280. $ 'SORGHR', ' ', N, 1, N, -1 ) )
  281. CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
  282. $ WORK, -1, INFO )
  283. HSWORK = INT( WORK(1) )
  284. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  285. CALL STREVC3( 'L', 'B', SELECT, N, A, LDA,
  286. $ VL, LDVL, VR, LDVR, N, NOUT,
  287. $ WORK, -1, IERR )
  288. LWORK_TREVC = INT( WORK(1) )
  289. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  290. MAXWRK = MAX( MAXWRK, 4*N )
  291. ELSE IF( WANTVR ) THEN
  292. MINWRK = 4*N
  293. MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
  294. $ 'SORGHR', ' ', N, 1, N, -1 ) )
  295. CALL SHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  296. $ WORK, -1, INFO )
  297. HSWORK = INT( WORK(1) )
  298. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  299. CALL STREVC3( 'R', 'B', SELECT, N, A, LDA,
  300. $ VL, LDVL, VR, LDVR, N, NOUT,
  301. $ WORK, -1, IERR )
  302. LWORK_TREVC = INT( WORK(1) )
  303. MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
  304. MAXWRK = MAX( MAXWRK, 4*N )
  305. ELSE
  306. MINWRK = 3*N
  307. CALL SHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
  308. $ WORK, -1, INFO )
  309. HSWORK = INT( WORK(1) )
  310. MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
  311. END IF
  312. MAXWRK = MAX( MAXWRK, MINWRK )
  313. END IF
  314. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  315. *
  316. IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
  317. INFO = -13
  318. END IF
  319. END IF
  320. *
  321. IF( INFO.NE.0 ) THEN
  322. CALL XERBLA( 'SGEEV ', -INFO )
  323. RETURN
  324. ELSE IF( LQUERY ) THEN
  325. RETURN
  326. END IF
  327. *
  328. * Quick return if possible
  329. *
  330. IF( N.EQ.0 )
  331. $ RETURN
  332. *
  333. * Get machine constants
  334. *
  335. EPS = SLAMCH( 'P' )
  336. SMLNUM = SLAMCH( 'S' )
  337. BIGNUM = ONE / SMLNUM
  338. SMLNUM = SQRT( SMLNUM ) / EPS
  339. BIGNUM = ONE / SMLNUM
  340. *
  341. * Scale A if max element outside range [SMLNUM,BIGNUM]
  342. *
  343. ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
  344. SCALEA = .FALSE.
  345. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
  346. SCALEA = .TRUE.
  347. CSCALE = SMLNUM
  348. ELSE IF( ANRM.GT.BIGNUM ) THEN
  349. SCALEA = .TRUE.
  350. CSCALE = BIGNUM
  351. END IF
  352. IF( SCALEA )
  353. $ CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
  354. *
  355. * Balance the matrix
  356. * (Workspace: need N)
  357. *
  358. IBAL = 1
  359. CALL SGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
  360. *
  361. * Reduce to upper Hessenberg form
  362. * (Workspace: need 3*N, prefer 2*N+N*NB)
  363. *
  364. ITAU = IBAL + N
  365. IWRK = ITAU + N
  366. CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
  367. $ LWORK-IWRK+1, IERR )
  368. *
  369. IF( WANTVL ) THEN
  370. *
  371. * Want left eigenvectors
  372. * Copy Householder vectors to VL
  373. *
  374. SIDE = 'L'
  375. CALL SLACPY( 'L', N, N, A, LDA, VL, LDVL )
  376. *
  377. * Generate orthogonal matrix in VL
  378. * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  379. *
  380. CALL SORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
  381. $ LWORK-IWRK+1, IERR )
  382. *
  383. * Perform QR iteration, accumulating Schur vectors in VL
  384. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  385. *
  386. IWRK = ITAU
  387. CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
  388. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  389. *
  390. IF( WANTVR ) THEN
  391. *
  392. * Want left and right eigenvectors
  393. * Copy Schur vectors to VR
  394. *
  395. SIDE = 'B'
  396. CALL SLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
  397. END IF
  398. *
  399. ELSE IF( WANTVR ) THEN
  400. *
  401. * Want right eigenvectors
  402. * Copy Householder vectors to VR
  403. *
  404. SIDE = 'R'
  405. CALL SLACPY( 'L', N, N, A, LDA, VR, LDVR )
  406. *
  407. * Generate orthogonal matrix in VR
  408. * (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
  409. *
  410. CALL SORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
  411. $ LWORK-IWRK+1, IERR )
  412. *
  413. * Perform QR iteration, accumulating Schur vectors in VR
  414. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  415. *
  416. IWRK = ITAU
  417. CALL SHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  418. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  419. *
  420. ELSE
  421. *
  422. * Compute eigenvalues only
  423. * (Workspace: need N+1, prefer N+HSWORK (see comments) )
  424. *
  425. IWRK = ITAU
  426. CALL SHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
  427. $ WORK( IWRK ), LWORK-IWRK+1, INFO )
  428. END IF
  429. *
  430. * If INFO .NE. 0 from SHSEQR, then quit
  431. *
  432. IF( INFO.NE.0 )
  433. $ GO TO 50
  434. *
  435. IF( WANTVL .OR. WANTVR ) THEN
  436. *
  437. * Compute left and/or right eigenvectors
  438. * (Workspace: need 4*N, prefer N + N + 2*N*NB)
  439. *
  440. CALL STREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
  441. $ N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
  442. END IF
  443. *
  444. IF( WANTVL ) THEN
  445. *
  446. * Undo balancing of left eigenvectors
  447. * (Workspace: need N)
  448. *
  449. CALL SGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
  450. $ IERR )
  451. *
  452. * Normalize left eigenvectors and make largest component real
  453. *
  454. DO 20 I = 1, N
  455. IF( WI( I ).EQ.ZERO ) THEN
  456. SCL = ONE / SNRM2( N, VL( 1, I ), 1 )
  457. CALL SSCAL( N, SCL, VL( 1, I ), 1 )
  458. ELSE IF( WI( I ).GT.ZERO ) THEN
  459. SCL = ONE / SLAPY2( SNRM2( N, VL( 1, I ), 1 ),
  460. $ SNRM2( N, VL( 1, I+1 ), 1 ) )
  461. CALL SSCAL( N, SCL, VL( 1, I ), 1 )
  462. CALL SSCAL( N, SCL, VL( 1, I+1 ), 1 )
  463. DO 10 K = 1, N
  464. WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
  465. 10 CONTINUE
  466. K = ISAMAX( N, WORK( IWRK ), 1 )
  467. CALL SLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
  468. CALL SROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
  469. VL( K, I+1 ) = ZERO
  470. END IF
  471. 20 CONTINUE
  472. END IF
  473. *
  474. IF( WANTVR ) THEN
  475. *
  476. * Undo balancing of right eigenvectors
  477. * (Workspace: need N)
  478. *
  479. CALL SGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
  480. $ IERR )
  481. *
  482. * Normalize right eigenvectors and make largest component real
  483. *
  484. DO 40 I = 1, N
  485. IF( WI( I ).EQ.ZERO ) THEN
  486. SCL = ONE / SNRM2( N, VR( 1, I ), 1 )
  487. CALL SSCAL( N, SCL, VR( 1, I ), 1 )
  488. ELSE IF( WI( I ).GT.ZERO ) THEN
  489. SCL = ONE / SLAPY2( SNRM2( N, VR( 1, I ), 1 ),
  490. $ SNRM2( N, VR( 1, I+1 ), 1 ) )
  491. CALL SSCAL( N, SCL, VR( 1, I ), 1 )
  492. CALL SSCAL( N, SCL, VR( 1, I+1 ), 1 )
  493. DO 30 K = 1, N
  494. WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
  495. 30 CONTINUE
  496. K = ISAMAX( N, WORK( IWRK ), 1 )
  497. CALL SLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
  498. CALL SROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
  499. VR( K, I+1 ) = ZERO
  500. END IF
  501. 40 CONTINUE
  502. END IF
  503. *
  504. * Undo scaling if necessary
  505. *
  506. 50 CONTINUE
  507. IF( SCALEA ) THEN
  508. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
  509. $ MAX( N-INFO, 1 ), IERR )
  510. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
  511. $ MAX( N-INFO, 1 ), IERR )
  512. IF( INFO.GT.0 ) THEN
  513. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
  514. $ IERR )
  515. CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
  516. $ IERR )
  517. END IF
  518. END IF
  519. *
  520. WORK( 1 ) = SROUNDUP_LWORK(MAXWRK)
  521. RETURN
  522. *
  523. * End of SGEEV
  524. *
  525. END