You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dggglm.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. *> \brief \b DGGGLM
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DGGGLM + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggglm.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggglm.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggglm.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
  22. * INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * INTEGER INFO, LDA, LDB, LWORK, M, N, P
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
  29. * $ X( * ), Y( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
  39. *>
  40. *> minimize || y ||_2 subject to d = A*x + B*y
  41. *> x
  42. *>
  43. *> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
  44. *> given N-vector. It is assumed that M <= N <= M+P, and
  45. *>
  46. *> rank(A) = M and rank( A B ) = N.
  47. *>
  48. *> Under these assumptions, the constrained equation is always
  49. *> consistent, and there is a unique solution x and a minimal 2-norm
  50. *> solution y, which is obtained using a generalized QR factorization
  51. *> of the matrices (A, B) given by
  52. *>
  53. *> A = Q*(R), B = Q*T*Z.
  54. *> (0)
  55. *>
  56. *> In particular, if matrix B is square nonsingular, then the problem
  57. *> GLM is equivalent to the following weighted linear least squares
  58. *> problem
  59. *>
  60. *> minimize || inv(B)*(d-A*x) ||_2
  61. *> x
  62. *>
  63. *> where inv(B) denotes the inverse of B.
  64. *> \endverbatim
  65. *
  66. * Arguments:
  67. * ==========
  68. *
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The number of rows of the matrices A and B. N >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] M
  76. *> \verbatim
  77. *> M is INTEGER
  78. *> The number of columns of the matrix A. 0 <= M <= N.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] P
  82. *> \verbatim
  83. *> P is INTEGER
  84. *> The number of columns of the matrix B. P >= N-M.
  85. *> \endverbatim
  86. *>
  87. *> \param[in,out] A
  88. *> \verbatim
  89. *> A is DOUBLE PRECISION array, dimension (LDA,M)
  90. *> On entry, the N-by-M matrix A.
  91. *> On exit, the upper triangular part of the array A contains
  92. *> the M-by-M upper triangular matrix R.
  93. *> \endverbatim
  94. *>
  95. *> \param[in] LDA
  96. *> \verbatim
  97. *> LDA is INTEGER
  98. *> The leading dimension of the array A. LDA >= max(1,N).
  99. *> \endverbatim
  100. *>
  101. *> \param[in,out] B
  102. *> \verbatim
  103. *> B is DOUBLE PRECISION array, dimension (LDB,P)
  104. *> On entry, the N-by-P matrix B.
  105. *> On exit, if N <= P, the upper triangle of the subarray
  106. *> B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
  107. *> if N > P, the elements on and above the (N-P)th subdiagonal
  108. *> contain the N-by-P upper trapezoidal matrix T.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] LDB
  112. *> \verbatim
  113. *> LDB is INTEGER
  114. *> The leading dimension of the array B. LDB >= max(1,N).
  115. *> \endverbatim
  116. *>
  117. *> \param[in,out] D
  118. *> \verbatim
  119. *> D is DOUBLE PRECISION array, dimension (N)
  120. *> On entry, D is the left hand side of the GLM equation.
  121. *> On exit, D is destroyed.
  122. *> \endverbatim
  123. *>
  124. *> \param[out] X
  125. *> \verbatim
  126. *> X is DOUBLE PRECISION array, dimension (M)
  127. *> \endverbatim
  128. *>
  129. *> \param[out] Y
  130. *> \verbatim
  131. *> Y is DOUBLE PRECISION array, dimension (P)
  132. *>
  133. *> On exit, X and Y are the solutions of the GLM problem.
  134. *> \endverbatim
  135. *>
  136. *> \param[out] WORK
  137. *> \verbatim
  138. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  139. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  140. *> \endverbatim
  141. *>
  142. *> \param[in] LWORK
  143. *> \verbatim
  144. *> LWORK is INTEGER
  145. *> The dimension of the array WORK. LWORK >= max(1,N+M+P).
  146. *> For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
  147. *> where NB is an upper bound for the optimal blocksizes for
  148. *> DGEQRF, SGERQF, DORMQR and SORMRQ.
  149. *>
  150. *> If LWORK = -1, then a workspace query is assumed; the routine
  151. *> only calculates the optimal size of the WORK array, returns
  152. *> this value as the first entry of the WORK array, and no error
  153. *> message related to LWORK is issued by XERBLA.
  154. *> \endverbatim
  155. *>
  156. *> \param[out] INFO
  157. *> \verbatim
  158. *> INFO is INTEGER
  159. *> = 0: successful exit.
  160. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  161. *> = 1: the upper triangular factor R associated with A in the
  162. *> generalized QR factorization of the pair (A, B) is
  163. *> singular, so that rank(A) < M; the least squares
  164. *> solution could not be computed.
  165. *> = 2: the bottom (N-M) by (N-M) part of the upper trapezoidal
  166. *> factor T associated with B in the generalized QR
  167. *> factorization of the pair (A, B) is singular, so that
  168. *> rank( A B ) < N; the least squares solution could not
  169. *> be computed.
  170. *> \endverbatim
  171. *
  172. * Authors:
  173. * ========
  174. *
  175. *> \author Univ. of Tennessee
  176. *> \author Univ. of California Berkeley
  177. *> \author Univ. of Colorado Denver
  178. *> \author NAG Ltd.
  179. *
  180. *> \ingroup doubleOTHEReigen
  181. *
  182. * =====================================================================
  183. SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
  184. $ INFO )
  185. *
  186. * -- LAPACK driver routine --
  187. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  188. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189. *
  190. * .. Scalar Arguments ..
  191. INTEGER INFO, LDA, LDB, LWORK, M, N, P
  192. * ..
  193. * .. Array Arguments ..
  194. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
  195. $ X( * ), Y( * )
  196. * ..
  197. *
  198. * ===================================================================
  199. *
  200. * .. Parameters ..
  201. DOUBLE PRECISION ZERO, ONE
  202. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  203. * ..
  204. * .. Local Scalars ..
  205. LOGICAL LQUERY
  206. INTEGER I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
  207. $ NB4, NP
  208. * ..
  209. * .. External Subroutines ..
  210. EXTERNAL DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
  211. $ XERBLA
  212. * ..
  213. * .. External Functions ..
  214. INTEGER ILAENV
  215. EXTERNAL ILAENV
  216. * ..
  217. * .. Intrinsic Functions ..
  218. INTRINSIC INT, MAX, MIN
  219. * ..
  220. * .. Executable Statements ..
  221. *
  222. * Test the input parameters
  223. *
  224. INFO = 0
  225. NP = MIN( N, P )
  226. LQUERY = ( LWORK.EQ.-1 )
  227. IF( N.LT.0 ) THEN
  228. INFO = -1
  229. ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
  230. INFO = -2
  231. ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
  232. INFO = -3
  233. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  234. INFO = -5
  235. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  236. INFO = -7
  237. END IF
  238. *
  239. * Calculate workspace
  240. *
  241. IF( INFO.EQ.0) THEN
  242. IF( N.EQ.0 ) THEN
  243. LWKMIN = 1
  244. LWKOPT = 1
  245. ELSE
  246. NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
  247. NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
  248. NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
  249. NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
  250. NB = MAX( NB1, NB2, NB3, NB4 )
  251. LWKMIN = M + N + P
  252. LWKOPT = M + NP + MAX( N, P )*NB
  253. END IF
  254. WORK( 1 ) = LWKOPT
  255. *
  256. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  257. INFO = -12
  258. END IF
  259. END IF
  260. *
  261. IF( INFO.NE.0 ) THEN
  262. CALL XERBLA( 'DGGGLM', -INFO )
  263. RETURN
  264. ELSE IF( LQUERY ) THEN
  265. RETURN
  266. END IF
  267. *
  268. * Quick return if possible
  269. *
  270. IF( N.EQ.0 ) THEN
  271. DO I = 1, M
  272. X(I) = ZERO
  273. END DO
  274. DO I = 1, P
  275. Y(I) = ZERO
  276. END DO
  277. RETURN
  278. END IF
  279. *
  280. * Compute the GQR factorization of matrices A and B:
  281. *
  282. * Q**T*A = ( R11 ) M, Q**T*B*Z**T = ( T11 T12 ) M
  283. * ( 0 ) N-M ( 0 T22 ) N-M
  284. * M M+P-N N-M
  285. *
  286. * where R11 and T22 are upper triangular, and Q and Z are
  287. * orthogonal.
  288. *
  289. CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
  290. $ WORK( M+NP+1 ), LWORK-M-NP, INFO )
  291. LOPT = INT( WORK( M+NP+1 ) )
  292. *
  293. * Update left-hand-side vector d = Q**T*d = ( d1 ) M
  294. * ( d2 ) N-M
  295. *
  296. CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
  297. $ MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
  298. LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
  299. *
  300. * Solve T22*y2 = d2 for y2
  301. *
  302. IF( N.GT.M ) THEN
  303. CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
  304. $ B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
  305. *
  306. IF( INFO.GT.0 ) THEN
  307. INFO = 1
  308. RETURN
  309. END IF
  310. *
  311. CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
  312. END IF
  313. *
  314. * Set y1 = 0
  315. *
  316. DO 10 I = 1, M + P - N
  317. Y( I ) = ZERO
  318. 10 CONTINUE
  319. *
  320. * Update d1 = d1 - T12*y2
  321. *
  322. CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
  323. $ Y( M+P-N+1 ), 1, ONE, D, 1 )
  324. *
  325. * Solve triangular system: R11*x = d1
  326. *
  327. IF( M.GT.0 ) THEN
  328. CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
  329. $ D, M, INFO )
  330. *
  331. IF( INFO.GT.0 ) THEN
  332. INFO = 2
  333. RETURN
  334. END IF
  335. *
  336. * Copy D to X
  337. *
  338. CALL DCOPY( M, D, 1, X, 1 )
  339. END IF
  340. *
  341. * Backward transformation y = Z**T *y
  342. *
  343. CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
  344. $ B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
  345. $ MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
  346. WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
  347. *
  348. RETURN
  349. *
  350. * End of DGGGLM
  351. *
  352. END