You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmlq.f 9.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. *> \brief \b CUNMLQ
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMLQ + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmlq.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmlq.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmlq.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CUNMLQ overwrites the general complex M-by-N matrix C with
  40. *>
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> where Q is a complex unitary matrix defined as the product of k
  46. *> elementary reflectors
  47. *>
  48. *> Q = H(k)**H . . . H(2)**H H(1)**H
  49. *>
  50. *> as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N
  51. *> if SIDE = 'R'.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**H from the Left;
  61. *> = 'R': apply Q or Q**H from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> = 'N': No transpose, apply Q;
  68. *> = 'C': Conjugate transpose, apply Q**H.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] M
  72. *> \verbatim
  73. *> M is INTEGER
  74. *> The number of rows of the matrix C. M >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The number of columns of the matrix C. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] K
  84. *> \verbatim
  85. *> K is INTEGER
  86. *> The number of elementary reflectors whose product defines
  87. *> the matrix Q.
  88. *> If SIDE = 'L', M >= K >= 0;
  89. *> if SIDE = 'R', N >= K >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension
  95. *> (LDA,M) if SIDE = 'L',
  96. *> (LDA,N) if SIDE = 'R'
  97. *> The i-th row must contain the vector which defines the
  98. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  99. *> CGELQF in the first k rows of its array argument A.
  100. *> \endverbatim
  101. *>
  102. *> \param[in] LDA
  103. *> \verbatim
  104. *> LDA is INTEGER
  105. *> The leading dimension of the array A. LDA >= max(1,K).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] TAU
  109. *> \verbatim
  110. *> TAU is COMPLEX array, dimension (K)
  111. *> TAU(i) must contain the scalar factor of the elementary
  112. *> reflector H(i), as returned by CGELQF.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] C
  116. *> \verbatim
  117. *> C is COMPLEX array, dimension (LDC,N)
  118. *> On entry, the M-by-N matrix C.
  119. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDC
  123. *> \verbatim
  124. *> LDC is INTEGER
  125. *> The leading dimension of the array C. LDC >= max(1,M).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  131. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *> If SIDE = 'L', LWORK >= max(1,N);
  139. *> if SIDE = 'R', LWORK >= max(1,M).
  140. *> For good performance, LWORK should generally be larger.
  141. *>
  142. *> If LWORK = -1, then a workspace query is assumed; the routine
  143. *> only calculates the optimal size of the WORK array, returns
  144. *> this value as the first entry of the WORK array, and no error
  145. *> message related to LWORK is issued by XERBLA.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \ingroup unmlq
  164. *
  165. * =====================================================================
  166. SUBROUTINE CUNMLQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  167. $ WORK, LWORK, INFO )
  168. *
  169. * -- LAPACK computational routine --
  170. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  171. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER SIDE, TRANS
  175. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  176. * ..
  177. * .. Array Arguments ..
  178. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  179. $ WORK( * )
  180. * ..
  181. *
  182. * =====================================================================
  183. *
  184. * .. Parameters ..
  185. INTEGER NBMAX, LDT, TSIZE
  186. PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
  187. $ TSIZE = LDT*NBMAX )
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL LEFT, LQUERY, NOTRAN
  191. CHARACTER TRANST
  192. INTEGER I, I1, I2, I3, IB, IC, IINFO, IWT, JC, LDWORK,
  193. $ LWKOPT, MI, NB, NBMIN, NI, NQ, NW
  194. * ..
  195. * .. External Functions ..
  196. LOGICAL LSAME
  197. INTEGER ILAENV
  198. REAL SROUNDUP_LWORK
  199. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL CLARFB, CLARFT, CUNML2, XERBLA
  203. * ..
  204. * .. Intrinsic Functions ..
  205. INTRINSIC MAX, MIN
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Test the input arguments
  210. *
  211. INFO = 0
  212. LEFT = LSAME( SIDE, 'L' )
  213. NOTRAN = LSAME( TRANS, 'N' )
  214. LQUERY = ( LWORK.EQ.-1 )
  215. *
  216. * NQ is the order of Q and NW is the minimum dimension of WORK
  217. *
  218. IF( LEFT ) THEN
  219. NQ = M
  220. NW = MAX( 1, N )
  221. ELSE
  222. NQ = N
  223. NW = MAX( 1, M )
  224. END IF
  225. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  226. INFO = -1
  227. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  228. INFO = -2
  229. ELSE IF( M.LT.0 ) THEN
  230. INFO = -3
  231. ELSE IF( N.LT.0 ) THEN
  232. INFO = -4
  233. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  234. INFO = -5
  235. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  236. INFO = -7
  237. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  238. INFO = -10
  239. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  240. INFO = -12
  241. END IF
  242. *
  243. IF( INFO.EQ.0 ) THEN
  244. *
  245. * Compute the workspace requirements
  246. *
  247. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
  248. LWKOPT = 1
  249. ELSE
  250. NB = MIN( NBMAX, ILAENV( 1, 'CUNMLQ', SIDE // TRANS, M, N,
  251. $ K, -1 ) )
  252. LWKOPT = NW*NB + TSIZE
  253. END IF
  254. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  255. END IF
  256. *
  257. IF( INFO.NE.0 ) THEN
  258. CALL XERBLA( 'CUNMLQ', -INFO )
  259. RETURN
  260. ELSE IF( LQUERY ) THEN
  261. RETURN
  262. END IF
  263. *
  264. * Quick return if possible
  265. *
  266. IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
  267. RETURN
  268. END IF
  269. *
  270. * Determine the block size
  271. *
  272. NBMIN = 2
  273. LDWORK = NW
  274. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  275. IF( LWORK.LT.LWKOPT ) THEN
  276. NB = (LWORK-TSIZE) / LDWORK
  277. NBMIN = MAX( 2, ILAENV( 2, 'CUNMLQ', SIDE // TRANS, M, N, K,
  278. $ -1 ) )
  279. END IF
  280. END IF
  281. *
  282. IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  283. *
  284. * Use unblocked code
  285. *
  286. CALL CUNML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  287. $ IINFO )
  288. ELSE
  289. *
  290. * Use blocked code
  291. *
  292. IWT = 1 + NW*NB
  293. IF( ( LEFT .AND. NOTRAN ) .OR.
  294. $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  295. I1 = 1
  296. I2 = K
  297. I3 = NB
  298. ELSE
  299. I1 = ( ( K-1 ) / NB )*NB + 1
  300. I2 = 1
  301. I3 = -NB
  302. END IF
  303. *
  304. IF( LEFT ) THEN
  305. NI = N
  306. JC = 1
  307. ELSE
  308. MI = M
  309. IC = 1
  310. END IF
  311. *
  312. IF( NOTRAN ) THEN
  313. TRANST = 'C'
  314. ELSE
  315. TRANST = 'N'
  316. END IF
  317. *
  318. DO 10 I = I1, I2, I3
  319. IB = MIN( NB, K-I+1 )
  320. *
  321. * Form the triangular factor of the block reflector
  322. * H = H(i) H(i+1) . . . H(i+ib-1)
  323. *
  324. CALL CLARFT( 'Forward', 'Rowwise', NQ-I+1, IB, A( I, I ),
  325. $ LDA, TAU( I ), WORK( IWT ), LDT )
  326. IF( LEFT ) THEN
  327. *
  328. * H or H**H is applied to C(i:m,1:n)
  329. *
  330. MI = M - I + 1
  331. IC = I
  332. ELSE
  333. *
  334. * H or H**H is applied to C(1:m,i:n)
  335. *
  336. NI = N - I + 1
  337. JC = I
  338. END IF
  339. *
  340. * Apply H or H**H
  341. *
  342. CALL CLARFB( SIDE, TRANST, 'Forward', 'Rowwise', MI, NI, IB,
  343. $ A( I, I ), LDA, WORK( IWT ), LDT,
  344. $ C( IC, JC ), LDC, WORK, LDWORK )
  345. 10 CONTINUE
  346. END IF
  347. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  348. RETURN
  349. *
  350. * End of CUNMLQ
  351. *
  352. END