You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

csyequb.f 9.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. *> \brief \b CSYEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CSYEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csyequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csyequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csyequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * REAL AMAX, SCOND
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), WORK( * )
  30. * REAL S( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CSYEQUB computes row and column scalings intended to equilibrate a
  40. *> symmetric matrix A (with respect to the Euclidean norm) and reduce
  41. *> its condition number. The scale factors S are computed by the BIN
  42. *> algorithm (see references) so that the scaled matrix B with elements
  43. *> B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of
  44. *> the smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension (LDA,N)
  67. *> The N-by-N symmetric matrix whose scaling factors are to be
  68. *> computed.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] LDA
  72. *> \verbatim
  73. *> LDA is INTEGER
  74. *> The leading dimension of the array A. LDA >= max(1,N).
  75. *> \endverbatim
  76. *>
  77. *> \param[out] S
  78. *> \verbatim
  79. *> S is REAL array, dimension (N)
  80. *> If INFO = 0, S contains the scale factors for A.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] SCOND
  84. *> \verbatim
  85. *> SCOND is REAL
  86. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  87. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  88. *> large nor too small, it is not worth scaling by S.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] AMAX
  92. *> \verbatim
  93. *> AMAX is REAL
  94. *> Largest absolute value of any matrix element. If AMAX is
  95. *> very close to overflow or very close to underflow, the
  96. *> matrix should be scaled.
  97. *> \endverbatim
  98. *>
  99. *> \param[out] WORK
  100. *> \verbatim
  101. *> WORK is COMPLEX array, dimension (2*N)
  102. *> \endverbatim
  103. *>
  104. *> \param[out] INFO
  105. *> \verbatim
  106. *> INFO is INTEGER
  107. *> = 0: successful exit
  108. *> < 0: if INFO = -i, the i-th argument had an illegal value
  109. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  110. *> \endverbatim
  111. *
  112. * Authors:
  113. * ========
  114. *
  115. *> \author Univ. of Tennessee
  116. *> \author Univ. of California Berkeley
  117. *> \author Univ. of Colorado Denver
  118. *> \author NAG Ltd.
  119. *
  120. *> \ingroup complexSYcomputational
  121. *
  122. *> \par References:
  123. * ================
  124. *>
  125. *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  126. *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  127. *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  128. *> Tech report version: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.1679
  129. *>
  130. * =====================================================================
  131. SUBROUTINE CSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  132. *
  133. * -- LAPACK computational routine --
  134. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  135. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  136. *
  137. * .. Scalar Arguments ..
  138. INTEGER INFO, LDA, N
  139. REAL AMAX, SCOND
  140. CHARACTER UPLO
  141. * ..
  142. * .. Array Arguments ..
  143. COMPLEX A( LDA, * ), WORK( * )
  144. REAL S( * )
  145. * ..
  146. *
  147. * =====================================================================
  148. *
  149. * .. Parameters ..
  150. REAL ONE, ZERO
  151. PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
  152. INTEGER MAX_ITER
  153. PARAMETER ( MAX_ITER = 100 )
  154. * ..
  155. * .. Local Scalars ..
  156. INTEGER I, J, ITER
  157. REAL AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  158. $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  159. LOGICAL UP
  160. COMPLEX ZDUM
  161. * ..
  162. * .. External Functions ..
  163. REAL SLAMCH
  164. LOGICAL LSAME
  165. EXTERNAL LSAME, SLAMCH
  166. * ..
  167. * .. External Subroutines ..
  168. EXTERNAL CLASSQ, XERBLA
  169. * ..
  170. * .. Intrinsic Functions ..
  171. INTRINSIC ABS, AIMAG, INT, LOG, MAX, MIN, REAL, SQRT
  172. * ..
  173. * .. Statement Functions ..
  174. REAL CABS1
  175. * ..
  176. * .. Statement Function Definitions ..
  177. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
  178. * ..
  179. * .. Executable Statements ..
  180. *
  181. * Test the input parameters.
  182. *
  183. INFO = 0
  184. IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  185. INFO = -1
  186. ELSE IF ( N .LT. 0 ) THEN
  187. INFO = -2
  188. ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  189. INFO = -4
  190. END IF
  191. IF ( INFO .NE. 0 ) THEN
  192. CALL XERBLA( 'CSYEQUB', -INFO )
  193. RETURN
  194. END IF
  195. UP = LSAME( UPLO, 'U' )
  196. AMAX = ZERO
  197. *
  198. * Quick return if possible.
  199. *
  200. IF ( N .EQ. 0 ) THEN
  201. SCOND = ONE
  202. RETURN
  203. END IF
  204. DO I = 1, N
  205. S( I ) = ZERO
  206. END DO
  207. AMAX = ZERO
  208. IF ( UP ) THEN
  209. DO J = 1, N
  210. DO I = 1, J-1
  211. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  212. S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  213. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  214. END DO
  215. S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  216. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  217. END DO
  218. ELSE
  219. DO J = 1, N
  220. S( J ) = MAX( S( J ), CABS1( A( J, J ) ) )
  221. AMAX = MAX( AMAX, CABS1( A( J, J ) ) )
  222. DO I = J+1, N
  223. S( I ) = MAX( S( I ), CABS1( A( I, J ) ) )
  224. S( J ) = MAX( S( J ), CABS1( A( I, J ) ) )
  225. AMAX = MAX( AMAX, CABS1( A( I, J ) ) )
  226. END DO
  227. END DO
  228. END IF
  229. DO J = 1, N
  230. S( J ) = 1.0 / S( J )
  231. END DO
  232. TOL = ONE / SQRT( 2.0E0 * N )
  233. DO ITER = 1, MAX_ITER
  234. SCALE = 0.0E0
  235. SUMSQ = 0.0E0
  236. * beta = |A|s
  237. DO I = 1, N
  238. WORK( I ) = ZERO
  239. END DO
  240. IF ( UP ) THEN
  241. DO J = 1, N
  242. DO I = 1, J-1
  243. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  244. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  245. END DO
  246. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  247. END DO
  248. ELSE
  249. DO J = 1, N
  250. WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J )
  251. DO I = J+1, N
  252. WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J )
  253. WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I )
  254. END DO
  255. END DO
  256. END IF
  257. * avg = s^T beta / n
  258. AVG = 0.0E0
  259. DO I = 1, N
  260. AVG = AVG + REAL( S( I )*WORK( I ) )
  261. END DO
  262. AVG = AVG / N
  263. STD = 0.0E0
  264. DO I = N+1, 2*N
  265. WORK( I ) = S( I-N ) * WORK( I-N ) - AVG
  266. END DO
  267. CALL CLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ )
  268. STD = SCALE * SQRT( SUMSQ / N )
  269. IF ( STD .LT. TOL * AVG ) GOTO 999
  270. DO I = 1, N
  271. T = CABS1( A( I, I ) )
  272. SI = S( I )
  273. C2 = ( N-1 ) * T
  274. C1 = REAL( N-2 ) * ( REAL( WORK( I ) ) - T*SI )
  275. C0 = -(T*SI)*SI + 2 * REAL( WORK( I ) ) * SI - N*AVG
  276. D = C1*C1 - 4*C0*C2
  277. IF ( D .LE. 0 ) THEN
  278. INFO = -1
  279. RETURN
  280. END IF
  281. SI = -2*C0 / ( C1 + SQRT( D ) )
  282. D = SI - S( I )
  283. U = ZERO
  284. IF ( UP ) THEN
  285. DO J = 1, I
  286. T = CABS1( A( J, I ) )
  287. U = U + S( J )*T
  288. WORK( J ) = WORK( J ) + D*T
  289. END DO
  290. DO J = I+1,N
  291. T = CABS1( A( I, J ) )
  292. U = U + S( J )*T
  293. WORK( J ) = WORK( J ) + D*T
  294. END DO
  295. ELSE
  296. DO J = 1, I
  297. T = CABS1( A( I, J ) )
  298. U = U + S( J )*T
  299. WORK( J ) = WORK( J ) + D*T
  300. END DO
  301. DO J = I+1,N
  302. T = CABS1( A( J, I ) )
  303. U = U + S( J )*T
  304. WORK( J ) = WORK( J ) + D*T
  305. END DO
  306. END IF
  307. AVG = AVG + ( U + REAL( WORK( I ) ) ) * D / N
  308. S( I ) = SI
  309. END DO
  310. END DO
  311. 999 CONTINUE
  312. SMLNUM = SLAMCH( 'SAFEMIN' )
  313. BIGNUM = ONE / SMLNUM
  314. SMIN = BIGNUM
  315. SMAX = ZERO
  316. T = ONE / SQRT( AVG )
  317. BASE = SLAMCH( 'B' )
  318. U = ONE / LOG( BASE )
  319. DO I = 1, N
  320. S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  321. SMIN = MIN( SMIN, S( I ) )
  322. SMAX = MAX( SMAX, S( I ) )
  323. END DO
  324. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  325. *
  326. END