You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cgeqrt.f 6.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. *> \brief \b CGEQRT
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CGEQRT + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, LDT, M, N, NB
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> CGEQRT computes a blocked QR factorization of a complex M-by-N matrix A
  37. *> using the compact WY representation of Q.
  38. *> \endverbatim
  39. *
  40. * Arguments:
  41. * ==========
  42. *
  43. *> \param[in] M
  44. *> \verbatim
  45. *> M is INTEGER
  46. *> The number of rows of the matrix A. M >= 0.
  47. *> \endverbatim
  48. *>
  49. *> \param[in] N
  50. *> \verbatim
  51. *> N is INTEGER
  52. *> The number of columns of the matrix A. N >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] NB
  56. *> \verbatim
  57. *> NB is INTEGER
  58. *> The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] A
  62. *> \verbatim
  63. *> A is COMPLEX array, dimension (LDA,N)
  64. *> On entry, the M-by-N matrix A.
  65. *> On exit, the elements on and above the diagonal of the array
  66. *> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
  67. *> upper triangular if M >= N); the elements below the diagonal
  68. *> are the columns of V.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] LDA
  72. *> \verbatim
  73. *> LDA is INTEGER
  74. *> The leading dimension of the array A. LDA >= max(1,M).
  75. *> \endverbatim
  76. *>
  77. *> \param[out] T
  78. *> \verbatim
  79. *> T is COMPLEX array, dimension (LDT,MIN(M,N))
  80. *> The upper triangular block reflectors stored in compact form
  81. *> as a sequence of upper triangular blocks. See below
  82. *> for further details.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDT
  86. *> \verbatim
  87. *> LDT is INTEGER
  88. *> The leading dimension of the array T. LDT >= NB.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] WORK
  92. *> \verbatim
  93. *> WORK is COMPLEX array, dimension (NB*N)
  94. *> \endverbatim
  95. *>
  96. *> \param[out] INFO
  97. *> \verbatim
  98. *> INFO is INTEGER
  99. *> = 0: successful exit
  100. *> < 0: if INFO = -i, the i-th argument had an illegal value
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \ingroup complexGEcomputational
  112. *
  113. *> \par Further Details:
  114. * =====================
  115. *>
  116. *> \verbatim
  117. *>
  118. *> The matrix V stores the elementary reflectors H(i) in the i-th column
  119. *> below the diagonal. For example, if M=5 and N=3, the matrix V is
  120. *>
  121. *> V = ( 1 )
  122. *> ( v1 1 )
  123. *> ( v1 v2 1 )
  124. *> ( v1 v2 v3 )
  125. *> ( v1 v2 v3 )
  126. *>
  127. *> where the vi's represent the vectors which define H(i), which are returned
  128. *> in the matrix A. The 1's along the diagonal of V are not stored in A.
  129. *>
  130. *> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
  131. *> block is of order NB except for the last block, which is of order
  132. *> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
  133. *> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
  134. *> for the last block) T's are stored in the NB-by-K matrix T as
  135. *>
  136. *> T = (T1 T2 ... TB).
  137. *> \endverbatim
  138. *>
  139. * =====================================================================
  140. SUBROUTINE CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
  141. *
  142. * -- LAPACK computational routine --
  143. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  144. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  145. *
  146. * .. Scalar Arguments ..
  147. INTEGER INFO, LDA, LDT, M, N, NB
  148. * ..
  149. * .. Array Arguments ..
  150. COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
  151. * ..
  152. *
  153. * =====================================================================
  154. *
  155. * ..
  156. * .. Local Scalars ..
  157. INTEGER I, IB, IINFO, K
  158. LOGICAL USE_RECURSIVE_QR
  159. PARAMETER( USE_RECURSIVE_QR=.TRUE. )
  160. * ..
  161. * .. External Subroutines ..
  162. EXTERNAL CGEQRT2, CGEQRT3, CLARFB, XERBLA
  163. * ..
  164. * .. Executable Statements ..
  165. *
  166. * Test the input arguments
  167. *
  168. INFO = 0
  169. IF( M.LT.0 ) THEN
  170. INFO = -1
  171. ELSE IF( N.LT.0 ) THEN
  172. INFO = -2
  173. ELSE IF( NB.LT.1 .OR. ( NB.GT.MIN(M,N) .AND. MIN(M,N).GT.0 ) )THEN
  174. INFO = -3
  175. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  176. INFO = -5
  177. ELSE IF( LDT.LT.NB ) THEN
  178. INFO = -7
  179. END IF
  180. IF( INFO.NE.0 ) THEN
  181. CALL XERBLA( 'CGEQRT', -INFO )
  182. RETURN
  183. END IF
  184. *
  185. * Quick return if possible
  186. *
  187. K = MIN( M, N )
  188. IF( K.EQ.0 ) RETURN
  189. *
  190. * Blocked loop of length K
  191. *
  192. DO I = 1, K, NB
  193. IB = MIN( K-I+1, NB )
  194. *
  195. * Compute the QR factorization of the current block A(I:M,I:I+IB-1)
  196. *
  197. IF( USE_RECURSIVE_QR ) THEN
  198. CALL CGEQRT3( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
  199. ELSE
  200. CALL CGEQRT2( M-I+1, IB, A(I,I), LDA, T(1,I), LDT, IINFO )
  201. END IF
  202. IF( I+IB.LE.N ) THEN
  203. *
  204. * Update by applying H**H to A(I:M,I+IB:N) from the left
  205. *
  206. CALL CLARFB( 'L', 'C', 'F', 'C', M-I+1, N-I-IB+1, IB,
  207. $ A( I, I ), LDA, T( 1, I ), LDT,
  208. $ A( I, I+IB ), LDA, WORK , N-I-IB+1 )
  209. END IF
  210. END DO
  211. RETURN
  212. *
  213. * End of CGEQRT
  214. *
  215. END