You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cunmql.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341
  1. *> \brief \b CUNMQL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CUNMQL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunmql.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunmql.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunmql.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  22. * WORK, LWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER SIDE, TRANS
  26. * INTEGER INFO, K, LDA, LDC, LWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  30. * $ WORK( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> CUNMQL overwrites the general complex M-by-N matrix C with
  40. *>
  41. *> SIDE = 'L' SIDE = 'R'
  42. *> TRANS = 'N': Q * C C * Q
  43. *> TRANS = 'C': Q**H * C C * Q**H
  44. *>
  45. *> where Q is a complex unitary matrix defined as the product of k
  46. *> elementary reflectors
  47. *>
  48. *> Q = H(k) . . . H(2) H(1)
  49. *>
  50. *> as returned by CGEQLF. Q is of order M if SIDE = 'L' and of order N
  51. *> if SIDE = 'R'.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] SIDE
  58. *> \verbatim
  59. *> SIDE is CHARACTER*1
  60. *> = 'L': apply Q or Q**H from the Left;
  61. *> = 'R': apply Q or Q**H from the Right.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] TRANS
  65. *> \verbatim
  66. *> TRANS is CHARACTER*1
  67. *> = 'N': No transpose, apply Q;
  68. *> = 'C': Conjugate transpose, apply Q**H.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] M
  72. *> \verbatim
  73. *> M is INTEGER
  74. *> The number of rows of the matrix C. M >= 0.
  75. *> \endverbatim
  76. *>
  77. *> \param[in] N
  78. *> \verbatim
  79. *> N is INTEGER
  80. *> The number of columns of the matrix C. N >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] K
  84. *> \verbatim
  85. *> K is INTEGER
  86. *> The number of elementary reflectors whose product defines
  87. *> the matrix Q.
  88. *> If SIDE = 'L', M >= K >= 0;
  89. *> if SIDE = 'R', N >= K >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension (LDA,K)
  95. *> The i-th column must contain the vector which defines the
  96. *> elementary reflector H(i), for i = 1,2,...,k, as returned by
  97. *> CGEQLF in the last k columns of its array argument A.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] LDA
  101. *> \verbatim
  102. *> LDA is INTEGER
  103. *> The leading dimension of the array A.
  104. *> If SIDE = 'L', LDA >= max(1,M);
  105. *> if SIDE = 'R', LDA >= max(1,N).
  106. *> \endverbatim
  107. *>
  108. *> \param[in] TAU
  109. *> \verbatim
  110. *> TAU is COMPLEX array, dimension (K)
  111. *> TAU(i) must contain the scalar factor of the elementary
  112. *> reflector H(i), as returned by CGEQLF.
  113. *> \endverbatim
  114. *>
  115. *> \param[in,out] C
  116. *> \verbatim
  117. *> C is COMPLEX array, dimension (LDC,N)
  118. *> On entry, the M-by-N matrix C.
  119. *> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDC
  123. *> \verbatim
  124. *> LDC is INTEGER
  125. *> The leading dimension of the array C. LDC >= max(1,M).
  126. *> \endverbatim
  127. *>
  128. *> \param[out] WORK
  129. *> \verbatim
  130. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  131. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  132. *> \endverbatim
  133. *>
  134. *> \param[in] LWORK
  135. *> \verbatim
  136. *> LWORK is INTEGER
  137. *> The dimension of the array WORK.
  138. *> If SIDE = 'L', LWORK >= max(1,N);
  139. *> if SIDE = 'R', LWORK >= max(1,M).
  140. *> For good performance, LWORK should generally be larger.
  141. *>
  142. *> If LWORK = -1, then a workspace query is assumed; the routine
  143. *> only calculates the optimal size of the WORK array, returns
  144. *> this value as the first entry of the WORK array, and no error
  145. *> message related to LWORK is issued by XERBLA.
  146. *> \endverbatim
  147. *>
  148. *> \param[out] INFO
  149. *> \verbatim
  150. *> INFO is INTEGER
  151. *> = 0: successful exit
  152. *> < 0: if INFO = -i, the i-th argument had an illegal value
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \ingroup unmql
  164. *
  165. * =====================================================================
  166. SUBROUTINE CUNMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
  167. $ WORK, LWORK, INFO )
  168. *
  169. * -- LAPACK computational routine --
  170. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  171. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172. *
  173. * .. Scalar Arguments ..
  174. CHARACTER SIDE, TRANS
  175. INTEGER INFO, K, LDA, LDC, LWORK, M, N
  176. * ..
  177. * .. Array Arguments ..
  178. COMPLEX A( LDA, * ), C( LDC, * ), TAU( * ),
  179. $ WORK( * )
  180. * ..
  181. *
  182. * =====================================================================
  183. *
  184. * .. Parameters ..
  185. INTEGER NBMAX, LDT, TSIZE
  186. PARAMETER ( NBMAX = 64, LDT = NBMAX+1,
  187. $ TSIZE = LDT*NBMAX )
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL LEFT, LQUERY, NOTRAN
  191. INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
  192. $ MI, NB, NBMIN, NI, NQ, NW
  193. * ..
  194. * .. External Functions ..
  195. LOGICAL LSAME
  196. INTEGER ILAENV
  197. REAL SROUNDUP_LWORK
  198. EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK
  199. * ..
  200. * .. External Subroutines ..
  201. EXTERNAL CLARFB, CLARFT, CUNM2L, XERBLA
  202. * ..
  203. * .. Intrinsic Functions ..
  204. INTRINSIC MAX, MIN
  205. * ..
  206. * .. Executable Statements ..
  207. *
  208. * Test the input arguments
  209. *
  210. INFO = 0
  211. LEFT = LSAME( SIDE, 'L' )
  212. NOTRAN = LSAME( TRANS, 'N' )
  213. LQUERY = ( LWORK.EQ.-1 )
  214. *
  215. * NQ is the order of Q and NW is the minimum dimension of WORK
  216. *
  217. IF( LEFT ) THEN
  218. NQ = M
  219. NW = MAX( 1, N )
  220. ELSE
  221. NQ = N
  222. NW = MAX( 1, M )
  223. END IF
  224. IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
  225. INFO = -1
  226. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  227. INFO = -2
  228. ELSE IF( M.LT.0 ) THEN
  229. INFO = -3
  230. ELSE IF( N.LT.0 ) THEN
  231. INFO = -4
  232. ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
  233. INFO = -5
  234. ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
  235. INFO = -7
  236. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  237. INFO = -10
  238. ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
  239. INFO = -12
  240. END IF
  241. *
  242. IF( INFO.EQ.0 ) THEN
  243. *
  244. * Compute the workspace requirements
  245. *
  246. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  247. LWKOPT = 1
  248. ELSE
  249. NB = MIN( NBMAX, ILAENV( 1, 'CUNMQL', SIDE // TRANS, M, N,
  250. $ K, -1 ) )
  251. LWKOPT = NW*NB + TSIZE
  252. END IF
  253. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  254. END IF
  255. *
  256. IF( INFO.NE.0 ) THEN
  257. CALL XERBLA( 'CUNMQL', -INFO )
  258. RETURN
  259. ELSE IF( LQUERY ) THEN
  260. RETURN
  261. END IF
  262. *
  263. * Quick return if possible
  264. *
  265. IF( M.EQ.0 .OR. N.EQ.0 ) THEN
  266. RETURN
  267. END IF
  268. *
  269. * Determine the block size
  270. *
  271. NBMIN = 2
  272. LDWORK = NW
  273. IF( NB.GT.1 .AND. NB.LT.K ) THEN
  274. IF( LWORK.LT.LWKOPT ) THEN
  275. NB = (LWORK-TSIZE) / LDWORK
  276. NBMIN = MAX( 2, ILAENV( 2, 'CUNMQL', SIDE // TRANS, M, N, K,
  277. $ -1 ) )
  278. END IF
  279. END IF
  280. *
  281. IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
  282. *
  283. * Use unblocked code
  284. *
  285. CALL CUNM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
  286. $ IINFO )
  287. ELSE
  288. *
  289. * Use blocked code
  290. *
  291. IWT = 1 + NW*NB
  292. IF( ( LEFT .AND. NOTRAN ) .OR.
  293. $ ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
  294. I1 = 1
  295. I2 = K
  296. I3 = NB
  297. ELSE
  298. I1 = ( ( K-1 ) / NB )*NB + 1
  299. I2 = 1
  300. I3 = -NB
  301. END IF
  302. *
  303. IF( LEFT ) THEN
  304. NI = N
  305. ELSE
  306. MI = M
  307. END IF
  308. *
  309. DO 10 I = I1, I2, I3
  310. IB = MIN( NB, K-I+1 )
  311. *
  312. * Form the triangular factor of the block reflector
  313. * H = H(i+ib-1) . . . H(i+1) H(i)
  314. *
  315. CALL CLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
  316. $ A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
  317. IF( LEFT ) THEN
  318. *
  319. * H or H**H is applied to C(1:m-k+i+ib-1,1:n)
  320. *
  321. MI = M - K + I + IB - 1
  322. ELSE
  323. *
  324. * H or H**H is applied to C(1:m,1:n-k+i+ib-1)
  325. *
  326. NI = N - K + I + IB - 1
  327. END IF
  328. *
  329. * Apply H or H**H
  330. *
  331. CALL CLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
  332. $ IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC,
  333. $ WORK, LDWORK )
  334. 10 CONTINUE
  335. END IF
  336. WORK( 1 ) = SROUNDUP_LWORK(LWKOPT)
  337. RETURN
  338. *
  339. * End of CUNMQL
  340. *
  341. END