You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctftri.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. *> \brief \b CTFTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTFTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctftri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctftri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctftri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO, DIAG
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CTFTRI computes the inverse of a triangular matrix A stored in RFP
  38. *> format.
  39. *>
  40. *> This is a Level 3 BLAS version of the algorithm.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] TRANSR
  47. *> \verbatim
  48. *> TRANSR is CHARACTER*1
  49. *> = 'N': The Normal TRANSR of RFP A is stored;
  50. *> = 'C': The Conjugate-transpose TRANSR of RFP A is stored.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> = 'U': A is upper triangular;
  57. *> = 'L': A is lower triangular.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIAG
  61. *> \verbatim
  62. *> DIAG is CHARACTER*1
  63. *> = 'N': A is non-unit triangular;
  64. *> = 'U': A is unit triangular.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] N
  68. *> \verbatim
  69. *> N is INTEGER
  70. *> The order of the matrix A. N >= 0.
  71. *> \endverbatim
  72. *>
  73. *> \param[in,out] A
  74. *> \verbatim
  75. *> A is COMPLEX array, dimension ( N*(N+1)/2 );
  76. *> On entry, the triangular matrix A in RFP format. RFP format
  77. *> is described by TRANSR, UPLO, and N as follows: If TRANSR =
  78. *> 'N' then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
  79. *> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
  80. *> the Conjugate-transpose of RFP A as defined when
  81. *> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
  82. *> follows: If UPLO = 'U' the RFP A contains the nt elements of
  83. *> upper packed A; If UPLO = 'L' the RFP A contains the nt
  84. *> elements of lower packed A. The LDA of RFP A is (N+1)/2 when
  85. *> TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is
  86. *> even and N is odd. See the Note below for more details.
  87. *>
  88. *> On exit, the (triangular) inverse of the original matrix, in
  89. *> the same storage format.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] INFO
  93. *> \verbatim
  94. *> INFO is INTEGER
  95. *> = 0: successful exit
  96. *> < 0: if INFO = -i, the i-th argument had an illegal value
  97. *> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
  98. *> matrix is singular and its inverse can not be computed.
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \ingroup complexOTHERcomputational
  110. *
  111. *> \par Further Details:
  112. * =====================
  113. *>
  114. *> \verbatim
  115. *>
  116. *> We first consider Standard Packed Format when N is even.
  117. *> We give an example where N = 6.
  118. *>
  119. *> AP is Upper AP is Lower
  120. *>
  121. *> 00 01 02 03 04 05 00
  122. *> 11 12 13 14 15 10 11
  123. *> 22 23 24 25 20 21 22
  124. *> 33 34 35 30 31 32 33
  125. *> 44 45 40 41 42 43 44
  126. *> 55 50 51 52 53 54 55
  127. *>
  128. *>
  129. *> Let TRANSR = 'N'. RFP holds AP as follows:
  130. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  131. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  132. *> conjugate-transpose of the first three columns of AP upper.
  133. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  134. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  135. *> conjugate-transpose of the last three columns of AP lower.
  136. *> To denote conjugate we place -- above the element. This covers the
  137. *> case N even and TRANSR = 'N'.
  138. *>
  139. *> RFP A RFP A
  140. *>
  141. *> -- -- --
  142. *> 03 04 05 33 43 53
  143. *> -- --
  144. *> 13 14 15 00 44 54
  145. *> --
  146. *> 23 24 25 10 11 55
  147. *>
  148. *> 33 34 35 20 21 22
  149. *> --
  150. *> 00 44 45 30 31 32
  151. *> -- --
  152. *> 01 11 55 40 41 42
  153. *> -- -- --
  154. *> 02 12 22 50 51 52
  155. *>
  156. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  157. *> transpose of RFP A above. One therefore gets:
  158. *>
  159. *>
  160. *> RFP A RFP A
  161. *>
  162. *> -- -- -- -- -- -- -- -- -- --
  163. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  164. *> -- -- -- -- -- -- -- -- -- --
  165. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  166. *> -- -- -- -- -- -- -- -- -- --
  167. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  168. *>
  169. *>
  170. *> We next consider Standard Packed Format when N is odd.
  171. *> We give an example where N = 5.
  172. *>
  173. *> AP is Upper AP is Lower
  174. *>
  175. *> 00 01 02 03 04 00
  176. *> 11 12 13 14 10 11
  177. *> 22 23 24 20 21 22
  178. *> 33 34 30 31 32 33
  179. *> 44 40 41 42 43 44
  180. *>
  181. *>
  182. *> Let TRANSR = 'N'. RFP holds AP as follows:
  183. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  184. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  185. *> conjugate-transpose of the first two columns of AP upper.
  186. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  187. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  188. *> conjugate-transpose of the last two columns of AP lower.
  189. *> To denote conjugate we place -- above the element. This covers the
  190. *> case N odd and TRANSR = 'N'.
  191. *>
  192. *> RFP A RFP A
  193. *>
  194. *> -- --
  195. *> 02 03 04 00 33 43
  196. *> --
  197. *> 12 13 14 10 11 44
  198. *>
  199. *> 22 23 24 20 21 22
  200. *> --
  201. *> 00 33 34 30 31 32
  202. *> -- --
  203. *> 01 11 44 40 41 42
  204. *>
  205. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  206. *> transpose of RFP A above. One therefore gets:
  207. *>
  208. *>
  209. *> RFP A RFP A
  210. *>
  211. *> -- -- -- -- -- -- -- -- --
  212. *> 02 12 22 00 01 00 10 20 30 40 50
  213. *> -- -- -- -- -- -- -- -- --
  214. *> 03 13 23 33 11 33 11 21 31 41 51
  215. *> -- -- -- -- -- -- -- -- --
  216. *> 04 14 24 34 44 43 44 22 32 42 52
  217. *> \endverbatim
  218. *>
  219. * =====================================================================
  220. SUBROUTINE CTFTRI( TRANSR, UPLO, DIAG, N, A, INFO )
  221. *
  222. * -- LAPACK computational routine --
  223. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  224. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  225. *
  226. * .. Scalar Arguments ..
  227. CHARACTER TRANSR, UPLO, DIAG
  228. INTEGER INFO, N
  229. * ..
  230. * .. Array Arguments ..
  231. COMPLEX A( 0: * )
  232. * ..
  233. *
  234. * =====================================================================
  235. *
  236. * .. Parameters ..
  237. COMPLEX CONE
  238. PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
  239. * ..
  240. * .. Local Scalars ..
  241. LOGICAL LOWER, NISODD, NORMALTRANSR
  242. INTEGER N1, N2, K
  243. * ..
  244. * .. External Functions ..
  245. LOGICAL LSAME
  246. EXTERNAL LSAME
  247. * ..
  248. * .. External Subroutines ..
  249. EXTERNAL XERBLA, CTRMM, CTRTRI
  250. * ..
  251. * .. Intrinsic Functions ..
  252. INTRINSIC MOD
  253. * ..
  254. * .. Executable Statements ..
  255. *
  256. * Test the input parameters.
  257. *
  258. INFO = 0
  259. NORMALTRANSR = LSAME( TRANSR, 'N' )
  260. LOWER = LSAME( UPLO, 'L' )
  261. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  262. INFO = -1
  263. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  264. INFO = -2
  265. ELSE IF( .NOT.LSAME( DIAG, 'N' ) .AND. .NOT.LSAME( DIAG, 'U' ) )
  266. $ THEN
  267. INFO = -3
  268. ELSE IF( N.LT.0 ) THEN
  269. INFO = -4
  270. END IF
  271. IF( INFO.NE.0 ) THEN
  272. CALL XERBLA( 'CTFTRI', -INFO )
  273. RETURN
  274. END IF
  275. *
  276. * Quick return if possible
  277. *
  278. IF( N.EQ.0 )
  279. $ RETURN
  280. *
  281. * If N is odd, set NISODD = .TRUE.
  282. * If N is even, set K = N/2 and NISODD = .FALSE.
  283. *
  284. IF( MOD( N, 2 ).EQ.0 ) THEN
  285. K = N / 2
  286. NISODD = .FALSE.
  287. ELSE
  288. NISODD = .TRUE.
  289. END IF
  290. *
  291. * Set N1 and N2 depending on LOWER
  292. *
  293. IF( LOWER ) THEN
  294. N2 = N / 2
  295. N1 = N - N2
  296. ELSE
  297. N1 = N / 2
  298. N2 = N - N1
  299. END IF
  300. *
  301. *
  302. * start execution: there are eight cases
  303. *
  304. IF( NISODD ) THEN
  305. *
  306. * N is odd
  307. *
  308. IF( NORMALTRANSR ) THEN
  309. *
  310. * N is odd and TRANSR = 'N'
  311. *
  312. IF( LOWER ) THEN
  313. *
  314. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  315. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  316. * T1 -> a(0), T2 -> a(n), S -> a(n1)
  317. *
  318. CALL CTRTRI( 'L', DIAG, N1, A( 0 ), N, INFO )
  319. IF( INFO.GT.0 )
  320. $ RETURN
  321. CALL CTRMM( 'R', 'L', 'N', DIAG, N2, N1, -CONE, A( 0 ),
  322. $ N, A( N1 ), N )
  323. CALL CTRTRI( 'U', DIAG, N2, A( N ), N, INFO )
  324. IF( INFO.GT.0 )
  325. $ INFO = INFO + N1
  326. IF( INFO.GT.0 )
  327. $ RETURN
  328. CALL CTRMM( 'L', 'U', 'C', DIAG, N2, N1, CONE, A( N ), N,
  329. $ A( N1 ), N )
  330. *
  331. ELSE
  332. *
  333. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  334. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  335. * T1 -> a(n2), T2 -> a(n1), S -> a(0)
  336. *
  337. CALL CTRTRI( 'L', DIAG, N1, A( N2 ), N, INFO )
  338. IF( INFO.GT.0 )
  339. $ RETURN
  340. CALL CTRMM( 'L', 'L', 'C', DIAG, N1, N2, -CONE, A( N2 ),
  341. $ N, A( 0 ), N )
  342. CALL CTRTRI( 'U', DIAG, N2, A( N1 ), N, INFO )
  343. IF( INFO.GT.0 )
  344. $ INFO = INFO + N1
  345. IF( INFO.GT.0 )
  346. $ RETURN
  347. CALL CTRMM( 'R', 'U', 'N', DIAG, N1, N2, CONE, A( N1 ),
  348. $ N, A( 0 ), N )
  349. *
  350. END IF
  351. *
  352. ELSE
  353. *
  354. * N is odd and TRANSR = 'C'
  355. *
  356. IF( LOWER ) THEN
  357. *
  358. * SRPA for LOWER, TRANSPOSE and N is odd
  359. * T1 -> a(0), T2 -> a(1), S -> a(0+n1*n1)
  360. *
  361. CALL CTRTRI( 'U', DIAG, N1, A( 0 ), N1, INFO )
  362. IF( INFO.GT.0 )
  363. $ RETURN
  364. CALL CTRMM( 'L', 'U', 'N', DIAG, N1, N2, -CONE, A( 0 ),
  365. $ N1, A( N1*N1 ), N1 )
  366. CALL CTRTRI( 'L', DIAG, N2, A( 1 ), N1, INFO )
  367. IF( INFO.GT.0 )
  368. $ INFO = INFO + N1
  369. IF( INFO.GT.0 )
  370. $ RETURN
  371. CALL CTRMM( 'R', 'L', 'C', DIAG, N1, N2, CONE, A( 1 ),
  372. $ N1, A( N1*N1 ), N1 )
  373. *
  374. ELSE
  375. *
  376. * SRPA for UPPER, TRANSPOSE and N is odd
  377. * T1 -> a(0+n2*n2), T2 -> a(0+n1*n2), S -> a(0)
  378. *
  379. CALL CTRTRI( 'U', DIAG, N1, A( N2*N2 ), N2, INFO )
  380. IF( INFO.GT.0 )
  381. $ RETURN
  382. CALL CTRMM( 'R', 'U', 'C', DIAG, N2, N1, -CONE,
  383. $ A( N2*N2 ), N2, A( 0 ), N2 )
  384. CALL CTRTRI( 'L', DIAG, N2, A( N1*N2 ), N2, INFO )
  385. IF( INFO.GT.0 )
  386. $ INFO = INFO + N1
  387. IF( INFO.GT.0 )
  388. $ RETURN
  389. CALL CTRMM( 'L', 'L', 'N', DIAG, N2, N1, CONE,
  390. $ A( N1*N2 ), N2, A( 0 ), N2 )
  391. END IF
  392. *
  393. END IF
  394. *
  395. ELSE
  396. *
  397. * N is even
  398. *
  399. IF( NORMALTRANSR ) THEN
  400. *
  401. * N is even and TRANSR = 'N'
  402. *
  403. IF( LOWER ) THEN
  404. *
  405. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  406. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  407. * T1 -> a(1), T2 -> a(0), S -> a(k+1)
  408. *
  409. CALL CTRTRI( 'L', DIAG, K, A( 1 ), N+1, INFO )
  410. IF( INFO.GT.0 )
  411. $ RETURN
  412. CALL CTRMM( 'R', 'L', 'N', DIAG, K, K, -CONE, A( 1 ),
  413. $ N+1, A( K+1 ), N+1 )
  414. CALL CTRTRI( 'U', DIAG, K, A( 0 ), N+1, INFO )
  415. IF( INFO.GT.0 )
  416. $ INFO = INFO + K
  417. IF( INFO.GT.0 )
  418. $ RETURN
  419. CALL CTRMM( 'L', 'U', 'C', DIAG, K, K, CONE, A( 0 ), N+1,
  420. $ A( K+1 ), N+1 )
  421. *
  422. ELSE
  423. *
  424. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  425. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  426. * T1 -> a(k+1), T2 -> a(k), S -> a(0)
  427. *
  428. CALL CTRTRI( 'L', DIAG, K, A( K+1 ), N+1, INFO )
  429. IF( INFO.GT.0 )
  430. $ RETURN
  431. CALL CTRMM( 'L', 'L', 'C', DIAG, K, K, -CONE, A( K+1 ),
  432. $ N+1, A( 0 ), N+1 )
  433. CALL CTRTRI( 'U', DIAG, K, A( K ), N+1, INFO )
  434. IF( INFO.GT.0 )
  435. $ INFO = INFO + K
  436. IF( INFO.GT.0 )
  437. $ RETURN
  438. CALL CTRMM( 'R', 'U', 'N', DIAG, K, K, CONE, A( K ), N+1,
  439. $ A( 0 ), N+1 )
  440. END IF
  441. ELSE
  442. *
  443. * N is even and TRANSR = 'C'
  444. *
  445. IF( LOWER ) THEN
  446. *
  447. * SRPA for LOWER, TRANSPOSE and N is even (see paper)
  448. * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
  449. * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
  450. *
  451. CALL CTRTRI( 'U', DIAG, K, A( K ), K, INFO )
  452. IF( INFO.GT.0 )
  453. $ RETURN
  454. CALL CTRMM( 'L', 'U', 'N', DIAG, K, K, -CONE, A( K ), K,
  455. $ A( K*( K+1 ) ), K )
  456. CALL CTRTRI( 'L', DIAG, K, A( 0 ), K, INFO )
  457. IF( INFO.GT.0 )
  458. $ INFO = INFO + K
  459. IF( INFO.GT.0 )
  460. $ RETURN
  461. CALL CTRMM( 'R', 'L', 'C', DIAG, K, K, CONE, A( 0 ), K,
  462. $ A( K*( K+1 ) ), K )
  463. ELSE
  464. *
  465. * SRPA for UPPER, TRANSPOSE and N is even (see paper)
  466. * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
  467. * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
  468. *
  469. CALL CTRTRI( 'U', DIAG, K, A( K*( K+1 ) ), K, INFO )
  470. IF( INFO.GT.0 )
  471. $ RETURN
  472. CALL CTRMM( 'R', 'U', 'C', DIAG, K, K, -CONE,
  473. $ A( K*( K+1 ) ), K, A( 0 ), K )
  474. CALL CTRTRI( 'L', DIAG, K, A( K*K ), K, INFO )
  475. IF( INFO.GT.0 )
  476. $ INFO = INFO + K
  477. IF( INFO.GT.0 )
  478. $ RETURN
  479. CALL CTRMM( 'L', 'L', 'N', DIAG, K, K, CONE, A( K*K ), K,
  480. $ A( 0 ), K )
  481. END IF
  482. END IF
  483. END IF
  484. *
  485. RETURN
  486. *
  487. * End of CTFTRI
  488. *
  489. END