You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claed8.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. *> \brief \b CLAED8 used by CSTEDC. Merges eigenvalues and deflates secular equation. Used when the original matrix is dense.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAED8 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claed8.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claed8.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claed8.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMBDA,
  22. * Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
  23. * GIVCOL, GIVNUM, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
  27. * REAL RHO
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  31. * $ INDXQ( * ), PERM( * )
  32. * REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ), W( * ),
  33. * $ Z( * )
  34. * COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CLAED8 merges the two sets of eigenvalues together into a single
  44. *> sorted set. Then it tries to deflate the size of the problem.
  45. *> There are two ways in which deflation can occur: when two or more
  46. *> eigenvalues are close together or if there is a tiny element in the
  47. *> Z vector. For each such occurrence the order of the related secular
  48. *> equation problem is reduced by one.
  49. *> \endverbatim
  50. *
  51. * Arguments:
  52. * ==========
  53. *
  54. *> \param[out] K
  55. *> \verbatim
  56. *> K is INTEGER
  57. *> Contains the number of non-deflated eigenvalues.
  58. *> This is the order of the related secular equation.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] N
  62. *> \verbatim
  63. *> N is INTEGER
  64. *> The dimension of the symmetric tridiagonal matrix. N >= 0.
  65. *> \endverbatim
  66. *>
  67. *> \param[in] QSIZ
  68. *> \verbatim
  69. *> QSIZ is INTEGER
  70. *> The dimension of the unitary matrix used to reduce
  71. *> the dense or band matrix to tridiagonal form.
  72. *> QSIZ >= N if ICOMPQ = 1.
  73. *> \endverbatim
  74. *>
  75. *> \param[in,out] Q
  76. *> \verbatim
  77. *> Q is COMPLEX array, dimension (LDQ,N)
  78. *> On entry, Q contains the eigenvectors of the partially solved
  79. *> system which has been previously updated in matrix
  80. *> multiplies with other partially solved eigensystems.
  81. *> On exit, Q contains the trailing (N-K) updated eigenvectors
  82. *> (those which were deflated) in its last N-K columns.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] LDQ
  86. *> \verbatim
  87. *> LDQ is INTEGER
  88. *> The leading dimension of the array Q. LDQ >= max( 1, N ).
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] D
  92. *> \verbatim
  93. *> D is REAL array, dimension (N)
  94. *> On entry, D contains the eigenvalues of the two submatrices to
  95. *> be combined. On exit, D contains the trailing (N-K) updated
  96. *> eigenvalues (those which were deflated) sorted into increasing
  97. *> order.
  98. *> \endverbatim
  99. *>
  100. *> \param[in,out] RHO
  101. *> \verbatim
  102. *> RHO is REAL
  103. *> Contains the off diagonal element associated with the rank-1
  104. *> cut which originally split the two submatrices which are now
  105. *> being recombined. RHO is modified during the computation to
  106. *> the value required by SLAED3.
  107. *> \endverbatim
  108. *>
  109. *> \param[in] CUTPNT
  110. *> \verbatim
  111. *> CUTPNT is INTEGER
  112. *> Contains the location of the last eigenvalue in the leading
  113. *> sub-matrix. MIN(1,N) <= CUTPNT <= N.
  114. *> \endverbatim
  115. *>
  116. *> \param[in] Z
  117. *> \verbatim
  118. *> Z is REAL array, dimension (N)
  119. *> On input this vector contains the updating vector (the last
  120. *> row of the first sub-eigenvector matrix and the first row of
  121. *> the second sub-eigenvector matrix). The contents of Z are
  122. *> destroyed during the updating process.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] DLAMBDA
  126. *> \verbatim
  127. *> DLAMBDA is REAL array, dimension (N)
  128. *> Contains a copy of the first K eigenvalues which will be used
  129. *> by SLAED3 to form the secular equation.
  130. *> \endverbatim
  131. *>
  132. *> \param[out] Q2
  133. *> \verbatim
  134. *> Q2 is COMPLEX array, dimension (LDQ2,N)
  135. *> If ICOMPQ = 0, Q2 is not referenced. Otherwise,
  136. *> Contains a copy of the first K eigenvectors which will be used
  137. *> by SLAED7 in a matrix multiply (SGEMM) to update the new
  138. *> eigenvectors.
  139. *> \endverbatim
  140. *>
  141. *> \param[in] LDQ2
  142. *> \verbatim
  143. *> LDQ2 is INTEGER
  144. *> The leading dimension of the array Q2. LDQ2 >= max( 1, N ).
  145. *> \endverbatim
  146. *>
  147. *> \param[out] W
  148. *> \verbatim
  149. *> W is REAL array, dimension (N)
  150. *> This will hold the first k values of the final
  151. *> deflation-altered z-vector and will be passed to SLAED3.
  152. *> \endverbatim
  153. *>
  154. *> \param[out] INDXP
  155. *> \verbatim
  156. *> INDXP is INTEGER array, dimension (N)
  157. *> This will contain the permutation used to place deflated
  158. *> values of D at the end of the array. On output INDXP(1:K)
  159. *> points to the nondeflated D-values and INDXP(K+1:N)
  160. *> points to the deflated eigenvalues.
  161. *> \endverbatim
  162. *>
  163. *> \param[out] INDX
  164. *> \verbatim
  165. *> INDX is INTEGER array, dimension (N)
  166. *> This will contain the permutation used to sort the contents of
  167. *> D into ascending order.
  168. *> \endverbatim
  169. *>
  170. *> \param[in] INDXQ
  171. *> \verbatim
  172. *> INDXQ is INTEGER array, dimension (N)
  173. *> This contains the permutation which separately sorts the two
  174. *> sub-problems in D into ascending order. Note that elements in
  175. *> the second half of this permutation must first have CUTPNT
  176. *> added to their values in order to be accurate.
  177. *> \endverbatim
  178. *>
  179. *> \param[out] PERM
  180. *> \verbatim
  181. *> PERM is INTEGER array, dimension (N)
  182. *> Contains the permutations (from deflation and sorting) to be
  183. *> applied to each eigenblock.
  184. *> \endverbatim
  185. *>
  186. *> \param[out] GIVPTR
  187. *> \verbatim
  188. *> GIVPTR is INTEGER
  189. *> Contains the number of Givens rotations which took place in
  190. *> this subproblem.
  191. *> \endverbatim
  192. *>
  193. *> \param[out] GIVCOL
  194. *> \verbatim
  195. *> GIVCOL is INTEGER array, dimension (2, N)
  196. *> Each pair of numbers indicates a pair of columns to take place
  197. *> in a Givens rotation.
  198. *> \endverbatim
  199. *>
  200. *> \param[out] GIVNUM
  201. *> \verbatim
  202. *> GIVNUM is REAL array, dimension (2, N)
  203. *> Each number indicates the S value to be used in the
  204. *> corresponding Givens rotation.
  205. *> \endverbatim
  206. *>
  207. *> \param[out] INFO
  208. *> \verbatim
  209. *> INFO is INTEGER
  210. *> = 0: successful exit.
  211. *> < 0: if INFO = -i, the i-th argument had an illegal value.
  212. *> \endverbatim
  213. *
  214. * Authors:
  215. * ========
  216. *
  217. *> \author Univ. of Tennessee
  218. *> \author Univ. of California Berkeley
  219. *> \author Univ. of Colorado Denver
  220. *> \author NAG Ltd.
  221. *
  222. *> \ingroup complexOTHERcomputational
  223. *
  224. * =====================================================================
  225. SUBROUTINE CLAED8( K, N, QSIZ, Q, LDQ, D, RHO, CUTPNT, Z, DLAMBDA,
  226. $ Q2, LDQ2, W, INDXP, INDX, INDXQ, PERM, GIVPTR,
  227. $ GIVCOL, GIVNUM, INFO )
  228. *
  229. * -- LAPACK computational routine --
  230. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  231. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  232. *
  233. * .. Scalar Arguments ..
  234. INTEGER CUTPNT, GIVPTR, INFO, K, LDQ, LDQ2, N, QSIZ
  235. REAL RHO
  236. * ..
  237. * .. Array Arguments ..
  238. INTEGER GIVCOL( 2, * ), INDX( * ), INDXP( * ),
  239. $ INDXQ( * ), PERM( * )
  240. REAL D( * ), DLAMBDA( * ), GIVNUM( 2, * ), W( * ),
  241. $ Z( * )
  242. COMPLEX Q( LDQ, * ), Q2( LDQ2, * )
  243. * ..
  244. *
  245. * =====================================================================
  246. *
  247. * .. Parameters ..
  248. REAL MONE, ZERO, ONE, TWO, EIGHT
  249. PARAMETER ( MONE = -1.0E0, ZERO = 0.0E0, ONE = 1.0E0,
  250. $ TWO = 2.0E0, EIGHT = 8.0E0 )
  251. * ..
  252. * .. Local Scalars ..
  253. INTEGER I, IMAX, J, JLAM, JMAX, JP, K2, N1, N1P1, N2
  254. REAL C, EPS, S, T, TAU, TOL
  255. * ..
  256. * .. External Functions ..
  257. INTEGER ISAMAX
  258. REAL SLAMCH, SLAPY2
  259. EXTERNAL ISAMAX, SLAMCH, SLAPY2
  260. * ..
  261. * .. External Subroutines ..
  262. EXTERNAL CCOPY, CLACPY, CSROT, SCOPY, SLAMRG, SSCAL,
  263. $ XERBLA
  264. * ..
  265. * .. Intrinsic Functions ..
  266. INTRINSIC ABS, MAX, MIN, SQRT
  267. * ..
  268. * .. Executable Statements ..
  269. *
  270. * Test the input parameters.
  271. *
  272. INFO = 0
  273. *
  274. IF( N.LT.0 ) THEN
  275. INFO = -2
  276. ELSE IF( QSIZ.LT.N ) THEN
  277. INFO = -3
  278. ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
  279. INFO = -5
  280. ELSE IF( CUTPNT.LT.MIN( 1, N ) .OR. CUTPNT.GT.N ) THEN
  281. INFO = -8
  282. ELSE IF( LDQ2.LT.MAX( 1, N ) ) THEN
  283. INFO = -12
  284. END IF
  285. IF( INFO.NE.0 ) THEN
  286. CALL XERBLA( 'CLAED8', -INFO )
  287. RETURN
  288. END IF
  289. *
  290. * Need to initialize GIVPTR to O here in case of quick exit
  291. * to prevent an unspecified code behavior (usually sigfault)
  292. * when IWORK array on entry to *stedc is not zeroed
  293. * (or at least some IWORK entries which used in *laed7 for GIVPTR).
  294. *
  295. GIVPTR = 0
  296. *
  297. * Quick return if possible
  298. *
  299. IF( N.EQ.0 )
  300. $ RETURN
  301. *
  302. N1 = CUTPNT
  303. N2 = N - N1
  304. N1P1 = N1 + 1
  305. *
  306. IF( RHO.LT.ZERO ) THEN
  307. CALL SSCAL( N2, MONE, Z( N1P1 ), 1 )
  308. END IF
  309. *
  310. * Normalize z so that norm(z) = 1
  311. *
  312. T = ONE / SQRT( TWO )
  313. DO 10 J = 1, N
  314. INDX( J ) = J
  315. 10 CONTINUE
  316. CALL SSCAL( N, T, Z, 1 )
  317. RHO = ABS( TWO*RHO )
  318. *
  319. * Sort the eigenvalues into increasing order
  320. *
  321. DO 20 I = CUTPNT + 1, N
  322. INDXQ( I ) = INDXQ( I ) + CUTPNT
  323. 20 CONTINUE
  324. DO 30 I = 1, N
  325. DLAMBDA( I ) = D( INDXQ( I ) )
  326. W( I ) = Z( INDXQ( I ) )
  327. 30 CONTINUE
  328. I = 1
  329. J = CUTPNT + 1
  330. CALL SLAMRG( N1, N2, DLAMBDA, 1, 1, INDX )
  331. DO 40 I = 1, N
  332. D( I ) = DLAMBDA( INDX( I ) )
  333. Z( I ) = W( INDX( I ) )
  334. 40 CONTINUE
  335. *
  336. * Calculate the allowable deflation tolerance
  337. *
  338. IMAX = ISAMAX( N, Z, 1 )
  339. JMAX = ISAMAX( N, D, 1 )
  340. EPS = SLAMCH( 'Epsilon' )
  341. TOL = EIGHT*EPS*ABS( D( JMAX ) )
  342. *
  343. * If the rank-1 modifier is small enough, no more needs to be done
  344. * -- except to reorganize Q so that its columns correspond with the
  345. * elements in D.
  346. *
  347. IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
  348. K = 0
  349. DO 50 J = 1, N
  350. PERM( J ) = INDXQ( INDX( J ) )
  351. CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  352. 50 CONTINUE
  353. CALL CLACPY( 'A', QSIZ, N, Q2( 1, 1 ), LDQ2, Q( 1, 1 ), LDQ )
  354. RETURN
  355. END IF
  356. *
  357. * If there are multiple eigenvalues then the problem deflates. Here
  358. * the number of equal eigenvalues are found. As each equal
  359. * eigenvalue is found, an elementary reflector is computed to rotate
  360. * the corresponding eigensubspace so that the corresponding
  361. * components of Z are zero in this new basis.
  362. *
  363. K = 0
  364. K2 = N + 1
  365. DO 60 J = 1, N
  366. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  367. *
  368. * Deflate due to small z component.
  369. *
  370. K2 = K2 - 1
  371. INDXP( K2 ) = J
  372. IF( J.EQ.N )
  373. $ GO TO 100
  374. ELSE
  375. JLAM = J
  376. GO TO 70
  377. END IF
  378. 60 CONTINUE
  379. 70 CONTINUE
  380. J = J + 1
  381. IF( J.GT.N )
  382. $ GO TO 90
  383. IF( RHO*ABS( Z( J ) ).LE.TOL ) THEN
  384. *
  385. * Deflate due to small z component.
  386. *
  387. K2 = K2 - 1
  388. INDXP( K2 ) = J
  389. ELSE
  390. *
  391. * Check if eigenvalues are close enough to allow deflation.
  392. *
  393. S = Z( JLAM )
  394. C = Z( J )
  395. *
  396. * Find sqrt(a**2+b**2) without overflow or
  397. * destructive underflow.
  398. *
  399. TAU = SLAPY2( C, S )
  400. T = D( J ) - D( JLAM )
  401. C = C / TAU
  402. S = -S / TAU
  403. IF( ABS( T*C*S ).LE.TOL ) THEN
  404. *
  405. * Deflation is possible.
  406. *
  407. Z( J ) = TAU
  408. Z( JLAM ) = ZERO
  409. *
  410. * Record the appropriate Givens rotation
  411. *
  412. GIVPTR = GIVPTR + 1
  413. GIVCOL( 1, GIVPTR ) = INDXQ( INDX( JLAM ) )
  414. GIVCOL( 2, GIVPTR ) = INDXQ( INDX( J ) )
  415. GIVNUM( 1, GIVPTR ) = C
  416. GIVNUM( 2, GIVPTR ) = S
  417. CALL CSROT( QSIZ, Q( 1, INDXQ( INDX( JLAM ) ) ), 1,
  418. $ Q( 1, INDXQ( INDX( J ) ) ), 1, C, S )
  419. T = D( JLAM )*C*C + D( J )*S*S
  420. D( J ) = D( JLAM )*S*S + D( J )*C*C
  421. D( JLAM ) = T
  422. K2 = K2 - 1
  423. I = 1
  424. 80 CONTINUE
  425. IF( K2+I.LE.N ) THEN
  426. IF( D( JLAM ).LT.D( INDXP( K2+I ) ) ) THEN
  427. INDXP( K2+I-1 ) = INDXP( K2+I )
  428. INDXP( K2+I ) = JLAM
  429. I = I + 1
  430. GO TO 80
  431. ELSE
  432. INDXP( K2+I-1 ) = JLAM
  433. END IF
  434. ELSE
  435. INDXP( K2+I-1 ) = JLAM
  436. END IF
  437. JLAM = J
  438. ELSE
  439. K = K + 1
  440. W( K ) = Z( JLAM )
  441. DLAMBDA( K ) = D( JLAM )
  442. INDXP( K ) = JLAM
  443. JLAM = J
  444. END IF
  445. END IF
  446. GO TO 70
  447. 90 CONTINUE
  448. *
  449. * Record the last eigenvalue.
  450. *
  451. K = K + 1
  452. W( K ) = Z( JLAM )
  453. DLAMBDA( K ) = D( JLAM )
  454. INDXP( K ) = JLAM
  455. *
  456. 100 CONTINUE
  457. *
  458. * Sort the eigenvalues and corresponding eigenvectors into DLAMBDA
  459. * and Q2 respectively. The eigenvalues/vectors which were not
  460. * deflated go into the first K slots of DLAMBDA and Q2 respectively,
  461. * while those which were deflated go into the last N - K slots.
  462. *
  463. DO 110 J = 1, N
  464. JP = INDXP( J )
  465. DLAMBDA( J ) = D( JP )
  466. PERM( J ) = INDXQ( INDX( JP ) )
  467. CALL CCOPY( QSIZ, Q( 1, PERM( J ) ), 1, Q2( 1, J ), 1 )
  468. 110 CONTINUE
  469. *
  470. * The deflated eigenvalues and their corresponding vectors go back
  471. * into the last N - K slots of D and Q respectively.
  472. *
  473. IF( K.LT.N ) THEN
  474. CALL SCOPY( N-K, DLAMBDA( K+1 ), 1, D( K+1 ), 1 )
  475. CALL CLACPY( 'A', QSIZ, N-K, Q2( 1, K+1 ), LDQ2, Q( 1, K+1 ),
  476. $ LDQ )
  477. END IF
  478. *
  479. RETURN
  480. *
  481. * End of CLAED8
  482. *
  483. END