You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zunhr_col.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439
  1. *> \brief \b ZUNHR_COL
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZUNHR_COL + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunhr_col.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunhr_col.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunhr_col.f">
  15. *> [TXT]</a
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, LDT, M, N, NB
  25. * ..
  26. * .. Array Arguments ..
  27. * COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
  28. * ..
  29. *
  30. *> \par Purpose:
  31. * =============
  32. *>
  33. *> \verbatim
  34. *>
  35. *> ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
  36. *> as input, stored in A, and performs Householder Reconstruction (HR),
  37. *> i.e. reconstructs Householder vectors V(i) implicitly representing
  38. *> another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
  39. *> where S is an N-by-N diagonal matrix with diagonal entries
  40. *> equal to +1 or -1. The Householder vectors (columns V(i) of V) are
  41. *> stored in A on output, and the diagonal entries of S are stored in D.
  42. *> Block reflectors are also returned in T
  43. *> (same output format as ZGEQRT).
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] M
  50. *> \verbatim
  51. *> M is INTEGER
  52. *> The number of rows of the matrix A. M >= 0.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The number of columns of the matrix A. M >= N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in] NB
  62. *> \verbatim
  63. *> NB is INTEGER
  64. *> The column block size to be used in the reconstruction
  65. *> of Householder column vector blocks in the array A and
  66. *> corresponding block reflectors in the array T. NB >= 1.
  67. *> (Note that if NB > N, then N is used instead of NB
  68. *> as the column block size.)
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX*16 array, dimension (LDA,N)
  74. *>
  75. *> On entry:
  76. *>
  77. *> The array A contains an M-by-N orthonormal matrix Q_in,
  78. *> i.e the columns of A are orthogonal unit vectors.
  79. *>
  80. *> On exit:
  81. *>
  82. *> The elements below the diagonal of A represent the unit
  83. *> lower-trapezoidal matrix V of Householder column vectors
  84. *> V(i). The unit diagonal entries of V are not stored
  85. *> (same format as the output below the diagonal in A from
  86. *> ZGEQRT). The matrix T and the matrix V stored on output
  87. *> in A implicitly define Q_out.
  88. *>
  89. *> The elements above the diagonal contain the factor U
  90. *> of the "modified" LU-decomposition:
  91. *> Q_in - ( S ) = V * U
  92. *> ( 0 )
  93. *> where 0 is a (M-N)-by-(M-N) zero matrix.
  94. *> \endverbatim
  95. *>
  96. *> \param[in] LDA
  97. *> \verbatim
  98. *> LDA is INTEGER
  99. *> The leading dimension of the array A. LDA >= max(1,M).
  100. *> \endverbatim
  101. *>
  102. *> \param[out] T
  103. *> \verbatim
  104. *> T is COMPLEX*16 array,
  105. *> dimension (LDT, N)
  106. *>
  107. *> Let NOCB = Number_of_output_col_blocks
  108. *> = CEIL(N/NB)
  109. *>
  110. *> On exit, T(1:NB, 1:N) contains NOCB upper-triangular
  111. *> block reflectors used to define Q_out stored in compact
  112. *> form as a sequence of upper-triangular NB-by-NB column
  113. *> blocks (same format as the output T in ZGEQRT).
  114. *> The matrix T and the matrix V stored on output in A
  115. *> implicitly define Q_out. NOTE: The lower triangles
  116. *> below the upper-triangular blocks will be filled with
  117. *> zeros. See Further Details.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] LDT
  121. *> \verbatim
  122. *> LDT is INTEGER
  123. *> The leading dimension of the array T.
  124. *> LDT >= max(1,min(NB,N)).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] D
  128. *> \verbatim
  129. *> D is COMPLEX*16 array, dimension min(M,N).
  130. *> The elements can be only plus or minus one.
  131. *>
  132. *> D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
  133. *> 1 <= i <= min(M,N), and Q_in_i is Q_in after performing
  134. *> i-1 steps of “modified” Gaussian elimination.
  135. *> See Further Details.
  136. *> \endverbatim
  137. *>
  138. *> \param[out] INFO
  139. *> \verbatim
  140. *> INFO is INTEGER
  141. *> = 0: successful exit
  142. *> < 0: if INFO = -i, the i-th argument had an illegal value
  143. *> \endverbatim
  144. *>
  145. *> \par Further Details:
  146. * =====================
  147. *>
  148. *> \verbatim
  149. *>
  150. *> The computed M-by-M unitary factor Q_out is defined implicitly as
  151. *> a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
  152. *> the compact WY-representation format in the corresponding blocks of
  153. *> matrices V (stored in A) and T.
  154. *>
  155. *> The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
  156. *> matrix A contains the column vectors V(i) in NB-size column
  157. *> blocks VB(j). For example, VB(1) contains the columns
  158. *> V(1), V(2), ... V(NB). NOTE: The unit entries on
  159. *> the diagonal of Y are not stored in A.
  160. *>
  161. *> The number of column blocks is
  162. *>
  163. *> NOCB = Number_of_output_col_blocks = CEIL(N/NB)
  164. *>
  165. *> where each block is of order NB except for the last block, which
  166. *> is of order LAST_NB = N - (NOCB-1)*NB.
  167. *>
  168. *> For example, if M=6, N=5 and NB=2, the matrix V is
  169. *>
  170. *>
  171. *> V = ( VB(1), VB(2), VB(3) ) =
  172. *>
  173. *> = ( 1 )
  174. *> ( v21 1 )
  175. *> ( v31 v32 1 )
  176. *> ( v41 v42 v43 1 )
  177. *> ( v51 v52 v53 v54 1 )
  178. *> ( v61 v62 v63 v54 v65 )
  179. *>
  180. *>
  181. *> For each of the column blocks VB(i), an upper-triangular block
  182. *> reflector TB(i) is computed. These blocks are stored as
  183. *> a sequence of upper-triangular column blocks in the NB-by-N
  184. *> matrix T. The size of each TB(i) block is NB-by-NB, except
  185. *> for the last block, whose size is LAST_NB-by-LAST_NB.
  186. *>
  187. *> For example, if M=6, N=5 and NB=2, the matrix T is
  188. *>
  189. *> T = ( TB(1), TB(2), TB(3) ) =
  190. *>
  191. *> = ( t11 t12 t13 t14 t15 )
  192. *> ( t22 t24 )
  193. *>
  194. *>
  195. *> The M-by-M factor Q_out is given as a product of NOCB
  196. *> unitary M-by-M matrices Q_out(i).
  197. *>
  198. *> Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),
  199. *>
  200. *> where each matrix Q_out(i) is given by the WY-representation
  201. *> using corresponding blocks from the matrices V and T:
  202. *>
  203. *> Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,
  204. *>
  205. *> where I is the identity matrix. Here is the formula with matrix
  206. *> dimensions:
  207. *>
  208. *> Q(i){M-by-M} = I{M-by-M} -
  209. *> VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},
  210. *>
  211. *> where INB = NB, except for the last block NOCB
  212. *> for which INB=LAST_NB.
  213. *>
  214. *> =====
  215. *> NOTE:
  216. *> =====
  217. *>
  218. *> If Q_in is the result of doing a QR factorization
  219. *> B = Q_in * R_in, then:
  220. *>
  221. *> B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.
  222. *>
  223. *> So if one wants to interpret Q_out as the result
  224. *> of the QR factorization of B, then the corresponding R_out
  225. *> should be equal to R_out = S * R_in, i.e. some rows of R_in
  226. *> should be multiplied by -1.
  227. *>
  228. *> For the details of the algorithm, see [1].
  229. *>
  230. *> [1] "Reconstructing Householder vectors from tall-skinny QR",
  231. *> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
  232. *> E. Solomonik, J. Parallel Distrib. Comput.,
  233. *> vol. 85, pp. 3-31, 2015.
  234. *> \endverbatim
  235. *>
  236. * Authors:
  237. * ========
  238. *
  239. *> \author Univ. of Tennessee
  240. *> \author Univ. of California Berkeley
  241. *> \author Univ. of Colorado Denver
  242. *> \author NAG Ltd.
  243. *
  244. *> \ingroup complex16OTHERcomputational
  245. *
  246. *> \par Contributors:
  247. * ==================
  248. *>
  249. *> \verbatim
  250. *>
  251. *> November 2019, Igor Kozachenko,
  252. *> Computer Science Division,
  253. *> University of California, Berkeley
  254. *>
  255. *> \endverbatim
  256. *
  257. * =====================================================================
  258. SUBROUTINE ZUNHR_COL( M, N, NB, A, LDA, T, LDT, D, INFO )
  259. IMPLICIT NONE
  260. *
  261. * -- LAPACK computational routine --
  262. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  263. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  264. *
  265. * .. Scalar Arguments ..
  266. INTEGER INFO, LDA, LDT, M, N, NB
  267. * ..
  268. * .. Array Arguments ..
  269. COMPLEX*16 A( LDA, * ), D( * ), T( LDT, * )
  270. * ..
  271. *
  272. * =====================================================================
  273. *
  274. * .. Parameters ..
  275. COMPLEX*16 CONE, CZERO
  276. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
  277. $ CZERO = ( 0.0D+0, 0.0D+0 ) )
  278. * ..
  279. * .. Local Scalars ..
  280. INTEGER I, IINFO, J, JB, JBTEMP1, JBTEMP2, JNB,
  281. $ NPLUSONE
  282. * ..
  283. * .. External Subroutines ..
  284. EXTERNAL ZCOPY, ZLAUNHR_COL_GETRFNP, ZSCAL, ZTRSM,
  285. $ XERBLA
  286. * ..
  287. * .. Intrinsic Functions ..
  288. INTRINSIC MAX, MIN
  289. * ..
  290. * .. Executable Statements ..
  291. *
  292. * Test the input parameters
  293. *
  294. INFO = 0
  295. IF( M.LT.0 ) THEN
  296. INFO = -1
  297. ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
  298. INFO = -2
  299. ELSE IF( NB.LT.1 ) THEN
  300. INFO = -3
  301. ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
  302. INFO = -5
  303. ELSE IF( LDT.LT.MAX( 1, MIN( NB, N ) ) ) THEN
  304. INFO = -7
  305. END IF
  306. *
  307. * Handle error in the input parameters.
  308. *
  309. IF( INFO.NE.0 ) THEN
  310. CALL XERBLA( 'ZUNHR_COL', -INFO )
  311. RETURN
  312. END IF
  313. *
  314. * Quick return if possible
  315. *
  316. IF( MIN( M, N ).EQ.0 ) THEN
  317. RETURN
  318. END IF
  319. *
  320. * On input, the M-by-N matrix A contains the unitary
  321. * M-by-N matrix Q_in.
  322. *
  323. * (1) Compute the unit lower-trapezoidal V (ones on the diagonal
  324. * are not stored) by performing the "modified" LU-decomposition.
  325. *
  326. * Q_in - ( S ) = V * U = ( V1 ) * U,
  327. * ( 0 ) ( V2 )
  328. *
  329. * where 0 is an (M-N)-by-N zero matrix.
  330. *
  331. * (1-1) Factor V1 and U.
  332. CALL ZLAUNHR_COL_GETRFNP( N, N, A, LDA, D, IINFO )
  333. *
  334. * (1-2) Solve for V2.
  335. *
  336. IF( M.GT.N ) THEN
  337. CALL ZTRSM( 'R', 'U', 'N', 'N', M-N, N, CONE, A, LDA,
  338. $ A( N+1, 1 ), LDA )
  339. END IF
  340. *
  341. * (2) Reconstruct the block reflector T stored in T(1:NB, 1:N)
  342. * as a sequence of upper-triangular blocks with NB-size column
  343. * blocking.
  344. *
  345. * Loop over the column blocks of size NB of the array A(1:M,1:N)
  346. * and the array T(1:NB,1:N), JB is the column index of a column
  347. * block, JNB is the column block size at each step JB.
  348. *
  349. NPLUSONE = N + 1
  350. DO JB = 1, N, NB
  351. *
  352. * (2-0) Determine the column block size JNB.
  353. *
  354. JNB = MIN( NPLUSONE-JB, NB )
  355. *
  356. * (2-1) Copy the upper-triangular part of the current JNB-by-JNB
  357. * diagonal block U(JB) (of the N-by-N matrix U) stored
  358. * in A(JB:JB+JNB-1,JB:JB+JNB-1) into the upper-triangular part
  359. * of the current JNB-by-JNB block T(1:JNB,JB:JB+JNB-1)
  360. * column-by-column, total JNB*(JNB+1)/2 elements.
  361. *
  362. JBTEMP1 = JB - 1
  363. DO J = JB, JB+JNB-1
  364. CALL ZCOPY( J-JBTEMP1, A( JB, J ), 1, T( 1, J ), 1 )
  365. END DO
  366. *
  367. * (2-2) Perform on the upper-triangular part of the current
  368. * JNB-by-JNB diagonal block U(JB) (of the N-by-N matrix U) stored
  369. * in T(1:JNB,JB:JB+JNB-1) the following operation in place:
  370. * (-1)*U(JB)*S(JB), i.e the result will be stored in the upper-
  371. * triangular part of T(1:JNB,JB:JB+JNB-1). This multiplication
  372. * of the JNB-by-JNB diagonal block U(JB) by the JNB-by-JNB
  373. * diagonal block S(JB) of the N-by-N sign matrix S from the
  374. * right means changing the sign of each J-th column of the block
  375. * U(JB) according to the sign of the diagonal element of the block
  376. * S(JB), i.e. S(J,J) that is stored in the array element D(J).
  377. *
  378. DO J = JB, JB+JNB-1
  379. IF( D( J ).EQ.CONE ) THEN
  380. CALL ZSCAL( J-JBTEMP1, -CONE, T( 1, J ), 1 )
  381. END IF
  382. END DO
  383. *
  384. * (2-3) Perform the triangular solve for the current block
  385. * matrix X(JB):
  386. *
  387. * X(JB) * (A(JB)**T) = B(JB), where:
  388. *
  389. * A(JB)**T is a JNB-by-JNB unit upper-triangular
  390. * coefficient block, and A(JB)=V1(JB), which
  391. * is a JNB-by-JNB unit lower-triangular block
  392. * stored in A(JB:JB+JNB-1,JB:JB+JNB-1).
  393. * The N-by-N matrix V1 is the upper part
  394. * of the M-by-N lower-trapezoidal matrix V
  395. * stored in A(1:M,1:N);
  396. *
  397. * B(JB) is a JNB-by-JNB upper-triangular right-hand
  398. * side block, B(JB) = (-1)*U(JB)*S(JB), and
  399. * B(JB) is stored in T(1:JNB,JB:JB+JNB-1);
  400. *
  401. * X(JB) is a JNB-by-JNB upper-triangular solution
  402. * block, X(JB) is the upper-triangular block
  403. * reflector T(JB), and X(JB) is stored
  404. * in T(1:JNB,JB:JB+JNB-1).
  405. *
  406. * In other words, we perform the triangular solve for the
  407. * upper-triangular block T(JB):
  408. *
  409. * T(JB) * (V1(JB)**T) = (-1)*U(JB)*S(JB).
  410. *
  411. * Even though the blocks X(JB) and B(JB) are upper-
  412. * triangular, the routine ZTRSM will access all JNB**2
  413. * elements of the square T(1:JNB,JB:JB+JNB-1). Therefore,
  414. * we need to set to zero the elements of the block
  415. * T(1:JNB,JB:JB+JNB-1) below the diagonal before the call
  416. * to ZTRSM.
  417. *
  418. * (2-3a) Set the elements to zero.
  419. *
  420. JBTEMP2 = JB - 2
  421. DO J = JB, JB+JNB-2
  422. DO I = J-JBTEMP2, MIN( NB, N )
  423. T( I, J ) = CZERO
  424. END DO
  425. END DO
  426. *
  427. * (2-3b) Perform the triangular solve.
  428. *
  429. CALL ZTRSM( 'R', 'L', 'C', 'U', JNB, JNB, CONE,
  430. $ A( JB, JB ), LDA, T( 1, JB ), LDT )
  431. *
  432. END DO
  433. *
  434. RETURN
  435. *
  436. * End of ZUNHR_COL
  437. *
  438. END