You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsytri.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380
  1. *> \brief \b ZSYTRI
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZSYTRI + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytri.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytri.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytri.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZSYTRI computes the inverse of a complex symmetric indefinite matrix
  39. *> A using the factorization A = U*D*U**T or A = L*D*L**T computed by
  40. *> ZSYTRF.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] UPLO
  47. *> \verbatim
  48. *> UPLO is CHARACTER*1
  49. *> Specifies whether the details of the factorization are stored
  50. *> as an upper or lower triangular matrix.
  51. *> = 'U': Upper triangular, form is A = U*D*U**T;
  52. *> = 'L': Lower triangular, form is A = L*D*L**T.
  53. *> \endverbatim
  54. *>
  55. *> \param[in] N
  56. *> \verbatim
  57. *> N is INTEGER
  58. *> The order of the matrix A. N >= 0.
  59. *> \endverbatim
  60. *>
  61. *> \param[in,out] A
  62. *> \verbatim
  63. *> A is COMPLEX*16 array, dimension (LDA,N)
  64. *> On entry, the block diagonal matrix D and the multipliers
  65. *> used to obtain the factor U or L as computed by ZSYTRF.
  66. *>
  67. *> On exit, if INFO = 0, the (symmetric) inverse of the original
  68. *> matrix. If UPLO = 'U', the upper triangular part of the
  69. *> inverse is formed and the part of A below the diagonal is not
  70. *> referenced; if UPLO = 'L' the lower triangular part of the
  71. *> inverse is formed and the part of A above the diagonal is
  72. *> not referenced.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] LDA
  76. *> \verbatim
  77. *> LDA is INTEGER
  78. *> The leading dimension of the array A. LDA >= max(1,N).
  79. *> \endverbatim
  80. *>
  81. *> \param[in] IPIV
  82. *> \verbatim
  83. *> IPIV is INTEGER array, dimension (N)
  84. *> Details of the interchanges and the block structure of D
  85. *> as determined by ZSYTRF.
  86. *> \endverbatim
  87. *>
  88. *> \param[out] WORK
  89. *> \verbatim
  90. *> WORK is COMPLEX*16 array, dimension (2*N)
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
  99. *> inverse could not be computed.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup complex16SYcomputational
  111. *
  112. * =====================================================================
  113. SUBROUTINE ZSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
  114. *
  115. * -- LAPACK computational routine --
  116. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  117. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  118. *
  119. * .. Scalar Arguments ..
  120. CHARACTER UPLO
  121. INTEGER INFO, LDA, N
  122. * ..
  123. * .. Array Arguments ..
  124. INTEGER IPIV( * )
  125. COMPLEX*16 A( LDA, * ), WORK( * )
  126. * ..
  127. *
  128. * =====================================================================
  129. *
  130. * .. Parameters ..
  131. COMPLEX*16 ONE, ZERO
  132. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ),
  133. $ ZERO = ( 0.0D+0, 0.0D+0 ) )
  134. * ..
  135. * .. Local Scalars ..
  136. LOGICAL UPPER
  137. INTEGER K, KP, KSTEP
  138. COMPLEX*16 AK, AKKP1, AKP1, D, T, TEMP
  139. * ..
  140. * .. External Functions ..
  141. LOGICAL LSAME
  142. COMPLEX*16 ZDOTU
  143. EXTERNAL LSAME, ZDOTU
  144. * ..
  145. * .. External Subroutines ..
  146. EXTERNAL XERBLA, ZCOPY, ZSWAP, ZSYMV
  147. * ..
  148. * .. Intrinsic Functions ..
  149. INTRINSIC ABS, MAX
  150. * ..
  151. * .. Executable Statements ..
  152. *
  153. * Test the input parameters.
  154. *
  155. INFO = 0
  156. UPPER = LSAME( UPLO, 'U' )
  157. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  158. INFO = -1
  159. ELSE IF( N.LT.0 ) THEN
  160. INFO = -2
  161. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  162. INFO = -4
  163. END IF
  164. IF( INFO.NE.0 ) THEN
  165. CALL XERBLA( 'ZSYTRI', -INFO )
  166. RETURN
  167. END IF
  168. *
  169. * Quick return if possible
  170. *
  171. IF( N.EQ.0 )
  172. $ RETURN
  173. *
  174. * Check that the diagonal matrix D is nonsingular.
  175. *
  176. IF( UPPER ) THEN
  177. *
  178. * Upper triangular storage: examine D from bottom to top
  179. *
  180. DO 10 INFO = N, 1, -1
  181. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  182. $ RETURN
  183. 10 CONTINUE
  184. ELSE
  185. *
  186. * Lower triangular storage: examine D from top to bottom.
  187. *
  188. DO 20 INFO = 1, N
  189. IF( IPIV( INFO ).GT.0 .AND. A( INFO, INFO ).EQ.ZERO )
  190. $ RETURN
  191. 20 CONTINUE
  192. END IF
  193. INFO = 0
  194. *
  195. IF( UPPER ) THEN
  196. *
  197. * Compute inv(A) from the factorization A = U*D*U**T.
  198. *
  199. * K is the main loop index, increasing from 1 to N in steps of
  200. * 1 or 2, depending on the size of the diagonal blocks.
  201. *
  202. K = 1
  203. 30 CONTINUE
  204. *
  205. * If K > N, exit from loop.
  206. *
  207. IF( K.GT.N )
  208. $ GO TO 40
  209. *
  210. IF( IPIV( K ).GT.0 ) THEN
  211. *
  212. * 1 x 1 diagonal block
  213. *
  214. * Invert the diagonal block.
  215. *
  216. A( K, K ) = ONE / A( K, K )
  217. *
  218. * Compute column K of the inverse.
  219. *
  220. IF( K.GT.1 ) THEN
  221. CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  222. CALL ZSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  223. $ A( 1, K ), 1 )
  224. A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  225. $ 1 )
  226. END IF
  227. KSTEP = 1
  228. ELSE
  229. *
  230. * 2 x 2 diagonal block
  231. *
  232. * Invert the diagonal block.
  233. *
  234. T = A( K, K+1 )
  235. AK = A( K, K ) / T
  236. AKP1 = A( K+1, K+1 ) / T
  237. AKKP1 = A( K, K+1 ) / T
  238. D = T*( AK*AKP1-ONE )
  239. A( K, K ) = AKP1 / D
  240. A( K+1, K+1 ) = AK / D
  241. A( K, K+1 ) = -AKKP1 / D
  242. *
  243. * Compute columns K and K+1 of the inverse.
  244. *
  245. IF( K.GT.1 ) THEN
  246. CALL ZCOPY( K-1, A( 1, K ), 1, WORK, 1 )
  247. CALL ZSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  248. $ A( 1, K ), 1 )
  249. A( K, K ) = A( K, K ) - ZDOTU( K-1, WORK, 1, A( 1, K ),
  250. $ 1 )
  251. A( K, K+1 ) = A( K, K+1 ) -
  252. $ ZDOTU( K-1, A( 1, K ), 1, A( 1, K+1 ), 1 )
  253. CALL ZCOPY( K-1, A( 1, K+1 ), 1, WORK, 1 )
  254. CALL ZSYMV( UPLO, K-1, -ONE, A, LDA, WORK, 1, ZERO,
  255. $ A( 1, K+1 ), 1 )
  256. A( K+1, K+1 ) = A( K+1, K+1 ) -
  257. $ ZDOTU( K-1, WORK, 1, A( 1, K+1 ), 1 )
  258. END IF
  259. KSTEP = 2
  260. END IF
  261. *
  262. KP = ABS( IPIV( K ) )
  263. IF( KP.NE.K ) THEN
  264. *
  265. * Interchange rows and columns K and KP in the leading
  266. * submatrix A(1:k+1,1:k+1)
  267. *
  268. CALL ZSWAP( KP-1, A( 1, K ), 1, A( 1, KP ), 1 )
  269. CALL ZSWAP( K-KP-1, A( KP+1, K ), 1, A( KP, KP+1 ), LDA )
  270. TEMP = A( K, K )
  271. A( K, K ) = A( KP, KP )
  272. A( KP, KP ) = TEMP
  273. IF( KSTEP.EQ.2 ) THEN
  274. TEMP = A( K, K+1 )
  275. A( K, K+1 ) = A( KP, K+1 )
  276. A( KP, K+1 ) = TEMP
  277. END IF
  278. END IF
  279. *
  280. K = K + KSTEP
  281. GO TO 30
  282. 40 CONTINUE
  283. *
  284. ELSE
  285. *
  286. * Compute inv(A) from the factorization A = L*D*L**T.
  287. *
  288. * K is the main loop index, increasing from 1 to N in steps of
  289. * 1 or 2, depending on the size of the diagonal blocks.
  290. *
  291. K = N
  292. 50 CONTINUE
  293. *
  294. * If K < 1, exit from loop.
  295. *
  296. IF( K.LT.1 )
  297. $ GO TO 60
  298. *
  299. IF( IPIV( K ).GT.0 ) THEN
  300. *
  301. * 1 x 1 diagonal block
  302. *
  303. * Invert the diagonal block.
  304. *
  305. A( K, K ) = ONE / A( K, K )
  306. *
  307. * Compute column K of the inverse.
  308. *
  309. IF( K.LT.N ) THEN
  310. CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  311. CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  312. $ ZERO, A( K+1, K ), 1 )
  313. A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  314. $ 1 )
  315. END IF
  316. KSTEP = 1
  317. ELSE
  318. *
  319. * 2 x 2 diagonal block
  320. *
  321. * Invert the diagonal block.
  322. *
  323. T = A( K, K-1 )
  324. AK = A( K-1, K-1 ) / T
  325. AKP1 = A( K, K ) / T
  326. AKKP1 = A( K, K-1 ) / T
  327. D = T*( AK*AKP1-ONE )
  328. A( K-1, K-1 ) = AKP1 / D
  329. A( K, K ) = AK / D
  330. A( K, K-1 ) = -AKKP1 / D
  331. *
  332. * Compute columns K-1 and K of the inverse.
  333. *
  334. IF( K.LT.N ) THEN
  335. CALL ZCOPY( N-K, A( K+1, K ), 1, WORK, 1 )
  336. CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  337. $ ZERO, A( K+1, K ), 1 )
  338. A( K, K ) = A( K, K ) - ZDOTU( N-K, WORK, 1, A( K+1, K ),
  339. $ 1 )
  340. A( K, K-1 ) = A( K, K-1 ) -
  341. $ ZDOTU( N-K, A( K+1, K ), 1, A( K+1, K-1 ),
  342. $ 1 )
  343. CALL ZCOPY( N-K, A( K+1, K-1 ), 1, WORK, 1 )
  344. CALL ZSYMV( UPLO, N-K, -ONE, A( K+1, K+1 ), LDA, WORK, 1,
  345. $ ZERO, A( K+1, K-1 ), 1 )
  346. A( K-1, K-1 ) = A( K-1, K-1 ) -
  347. $ ZDOTU( N-K, WORK, 1, A( K+1, K-1 ), 1 )
  348. END IF
  349. KSTEP = 2
  350. END IF
  351. *
  352. KP = ABS( IPIV( K ) )
  353. IF( KP.NE.K ) THEN
  354. *
  355. * Interchange rows and columns K and KP in the trailing
  356. * submatrix A(k-1:n,k-1:n)
  357. *
  358. IF( KP.LT.N )
  359. $ CALL ZSWAP( N-KP, A( KP+1, K ), 1, A( KP+1, KP ), 1 )
  360. CALL ZSWAP( KP-K-1, A( K+1, K ), 1, A( KP, K+1 ), LDA )
  361. TEMP = A( K, K )
  362. A( K, K ) = A( KP, KP )
  363. A( KP, KP ) = TEMP
  364. IF( KSTEP.EQ.2 ) THEN
  365. TEMP = A( K, K-1 )
  366. A( K, K-1 ) = A( KP, K-1 )
  367. A( KP, K-1 ) = TEMP
  368. END IF
  369. END IF
  370. *
  371. K = K - KSTEP
  372. GO TO 50
  373. 60 CONTINUE
  374. END IF
  375. *
  376. RETURN
  377. *
  378. * End of ZSYTRI
  379. *
  380. END