You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zpstf2.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. *> \brief \b ZPSTF2 computes the Cholesky factorization with complete pivoting of a complex Hermitian positive semidefinite matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZPSTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * DOUBLE PRECISION TOL
  25. * INTEGER INFO, LDA, N, RANK
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 A( LDA, * )
  30. * DOUBLE PRECISION WORK( 2*N )
  31. * INTEGER PIV( N )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZPSTF2 computes the Cholesky factorization with complete
  41. *> pivoting of a complex Hermitian positive semidefinite matrix A.
  42. *>
  43. *> The factorization has the form
  44. *> P**T * A * P = U**H * U , if UPLO = 'U',
  45. *> P**T * A * P = L * L**H, if UPLO = 'L',
  46. *> where U is an upper triangular matrix and L is lower triangular, and
  47. *> P is stored as vector PIV.
  48. *>
  49. *> This algorithm does not attempt to check that A is positive
  50. *> semidefinite. This version of the algorithm calls level 2 BLAS.
  51. *> \endverbatim
  52. *
  53. * Arguments:
  54. * ==========
  55. *
  56. *> \param[in] UPLO
  57. *> \verbatim
  58. *> UPLO is CHARACTER*1
  59. *> Specifies whether the upper or lower triangular part of the
  60. *> symmetric matrix A is stored.
  61. *> = 'U': Upper triangular
  62. *> = 'L': Lower triangular
  63. *> \endverbatim
  64. *>
  65. *> \param[in] N
  66. *> \verbatim
  67. *> N is INTEGER
  68. *> The order of the matrix A. N >= 0.
  69. *> \endverbatim
  70. *>
  71. *> \param[in,out] A
  72. *> \verbatim
  73. *> A is COMPLEX*16 array, dimension (LDA,N)
  74. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  75. *> n by n upper triangular part of A contains the upper
  76. *> triangular part of the matrix A, and the strictly lower
  77. *> triangular part of A is not referenced. If UPLO = 'L', the
  78. *> leading n by n lower triangular part of A contains the lower
  79. *> triangular part of the matrix A, and the strictly upper
  80. *> triangular part of A is not referenced.
  81. *>
  82. *> On exit, if INFO = 0, the factor U or L from the Cholesky
  83. *> factorization as above.
  84. *> \endverbatim
  85. *>
  86. *> \param[out] PIV
  87. *> \verbatim
  88. *> PIV is INTEGER array, dimension (N)
  89. *> PIV is such that the nonzero entries are P( PIV(K), K ) = 1.
  90. *> \endverbatim
  91. *>
  92. *> \param[out] RANK
  93. *> \verbatim
  94. *> RANK is INTEGER
  95. *> The rank of A given by the number of steps the algorithm
  96. *> completed.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] TOL
  100. *> \verbatim
  101. *> TOL is DOUBLE PRECISION
  102. *> User defined tolerance. If TOL < 0, then N*U*MAX( A( K,K ) )
  103. *> will be used. The algorithm terminates at the (K-1)st step
  104. *> if the pivot <= TOL.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] LDA
  108. *> \verbatim
  109. *> LDA is INTEGER
  110. *> The leading dimension of the array A. LDA >= max(1,N).
  111. *> \endverbatim
  112. *>
  113. *> \param[out] WORK
  114. *> \verbatim
  115. *> WORK is DOUBLE PRECISION array, dimension (2*N)
  116. *> Work space.
  117. *> \endverbatim
  118. *>
  119. *> \param[out] INFO
  120. *> \verbatim
  121. *> INFO is INTEGER
  122. *> < 0: If INFO = -K, the K-th argument had an illegal value,
  123. *> = 0: algorithm completed successfully, and
  124. *> > 0: the matrix A is either rank deficient with computed rank
  125. *> as returned in RANK, or is not positive semidefinite. See
  126. *> Section 7 of LAPACK Working Note #161 for further
  127. *> information.
  128. *> \endverbatim
  129. *
  130. * Authors:
  131. * ========
  132. *
  133. *> \author Univ. of Tennessee
  134. *> \author Univ. of California Berkeley
  135. *> \author Univ. of Colorado Denver
  136. *> \author NAG Ltd.
  137. *
  138. *> \ingroup complex16OTHERcomputational
  139. *
  140. * =====================================================================
  141. SUBROUTINE ZPSTF2( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO )
  142. *
  143. * -- LAPACK computational routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. DOUBLE PRECISION TOL
  149. INTEGER INFO, LDA, N, RANK
  150. CHARACTER UPLO
  151. * ..
  152. * .. Array Arguments ..
  153. COMPLEX*16 A( LDA, * )
  154. DOUBLE PRECISION WORK( 2*N )
  155. INTEGER PIV( N )
  156. * ..
  157. *
  158. * =====================================================================
  159. *
  160. * .. Parameters ..
  161. DOUBLE PRECISION ONE, ZERO
  162. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  163. COMPLEX*16 CONE
  164. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  165. * ..
  166. * .. Local Scalars ..
  167. COMPLEX*16 ZTEMP
  168. DOUBLE PRECISION AJJ, DSTOP, DTEMP
  169. INTEGER I, ITEMP, J, PVT
  170. LOGICAL UPPER
  171. * ..
  172. * .. External Functions ..
  173. DOUBLE PRECISION DLAMCH
  174. LOGICAL LSAME, DISNAN
  175. EXTERNAL DLAMCH, LSAME, DISNAN
  176. * ..
  177. * .. External Subroutines ..
  178. EXTERNAL ZDSCAL, ZGEMV, ZLACGV, ZSWAP, XERBLA
  179. * ..
  180. * .. Intrinsic Functions ..
  181. INTRINSIC DBLE, DCONJG, MAX, SQRT
  182. * ..
  183. * .. Executable Statements ..
  184. *
  185. * Test the input parameters
  186. *
  187. INFO = 0
  188. UPPER = LSAME( UPLO, 'U' )
  189. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  190. INFO = -1
  191. ELSE IF( N.LT.0 ) THEN
  192. INFO = -2
  193. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  194. INFO = -4
  195. END IF
  196. IF( INFO.NE.0 ) THEN
  197. CALL XERBLA( 'ZPSTF2', -INFO )
  198. RETURN
  199. END IF
  200. *
  201. * Quick return if possible
  202. *
  203. IF( N.EQ.0 )
  204. $ RETURN
  205. *
  206. * Initialize PIV
  207. *
  208. DO 100 I = 1, N
  209. PIV( I ) = I
  210. 100 CONTINUE
  211. *
  212. * Compute stopping value
  213. *
  214. DO 110 I = 1, N
  215. WORK( I ) = DBLE( A( I, I ) )
  216. 110 CONTINUE
  217. PVT = MAXLOC( WORK( 1:N ), 1 )
  218. AJJ = DBLE( A( PVT, PVT ) )
  219. IF( AJJ.LE.ZERO.OR.DISNAN( AJJ ) ) THEN
  220. RANK = 0
  221. INFO = 1
  222. GO TO 200
  223. END IF
  224. *
  225. * Compute stopping value if not supplied
  226. *
  227. IF( TOL.LT.ZERO ) THEN
  228. DSTOP = N * DLAMCH( 'Epsilon' ) * AJJ
  229. ELSE
  230. DSTOP = TOL
  231. END IF
  232. *
  233. * Set first half of WORK to zero, holds dot products
  234. *
  235. DO 120 I = 1, N
  236. WORK( I ) = 0
  237. 120 CONTINUE
  238. *
  239. IF( UPPER ) THEN
  240. *
  241. * Compute the Cholesky factorization P**T * A * P = U**H* U
  242. *
  243. DO 150 J = 1, N
  244. *
  245. * Find pivot, test for exit, else swap rows and columns
  246. * Update dot products, compute possible pivots which are
  247. * stored in the second half of WORK
  248. *
  249. DO 130 I = J, N
  250. *
  251. IF( J.GT.1 ) THEN
  252. WORK( I ) = WORK( I ) +
  253. $ DBLE( DCONJG( A( J-1, I ) )*
  254. $ A( J-1, I ) )
  255. END IF
  256. WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  257. *
  258. 130 CONTINUE
  259. *
  260. IF( J.GT.1 ) THEN
  261. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  262. PVT = ITEMP + J - 1
  263. AJJ = WORK( N+PVT )
  264. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  265. A( J, J ) = AJJ
  266. GO TO 190
  267. END IF
  268. END IF
  269. *
  270. IF( J.NE.PVT ) THEN
  271. *
  272. * Pivot OK, so can now swap pivot rows and columns
  273. *
  274. A( PVT, PVT ) = A( J, J )
  275. CALL ZSWAP( J-1, A( 1, J ), 1, A( 1, PVT ), 1 )
  276. IF( PVT.LT.N )
  277. $ CALL ZSWAP( N-PVT, A( J, PVT+1 ), LDA,
  278. $ A( PVT, PVT+1 ), LDA )
  279. DO 140 I = J + 1, PVT - 1
  280. ZTEMP = DCONJG( A( J, I ) )
  281. A( J, I ) = DCONJG( A( I, PVT ) )
  282. A( I, PVT ) = ZTEMP
  283. 140 CONTINUE
  284. A( J, PVT ) = DCONJG( A( J, PVT ) )
  285. *
  286. * Swap dot products and PIV
  287. *
  288. DTEMP = WORK( J )
  289. WORK( J ) = WORK( PVT )
  290. WORK( PVT ) = DTEMP
  291. ITEMP = PIV( PVT )
  292. PIV( PVT ) = PIV( J )
  293. PIV( J ) = ITEMP
  294. END IF
  295. *
  296. AJJ = SQRT( AJJ )
  297. A( J, J ) = AJJ
  298. *
  299. * Compute elements J+1:N of row J
  300. *
  301. IF( J.LT.N ) THEN
  302. CALL ZLACGV( J-1, A( 1, J ), 1 )
  303. CALL ZGEMV( 'Trans', J-1, N-J, -CONE, A( 1, J+1 ), LDA,
  304. $ A( 1, J ), 1, CONE, A( J, J+1 ), LDA )
  305. CALL ZLACGV( J-1, A( 1, J ), 1 )
  306. CALL ZDSCAL( N-J, ONE / AJJ, A( J, J+1 ), LDA )
  307. END IF
  308. *
  309. 150 CONTINUE
  310. *
  311. ELSE
  312. *
  313. * Compute the Cholesky factorization P**T * A * P = L * L**H
  314. *
  315. DO 180 J = 1, N
  316. *
  317. * Find pivot, test for exit, else swap rows and columns
  318. * Update dot products, compute possible pivots which are
  319. * stored in the second half of WORK
  320. *
  321. DO 160 I = J, N
  322. *
  323. IF( J.GT.1 ) THEN
  324. WORK( I ) = WORK( I ) +
  325. $ DBLE( DCONJG( A( I, J-1 ) )*
  326. $ A( I, J-1 ) )
  327. END IF
  328. WORK( N+I ) = DBLE( A( I, I ) ) - WORK( I )
  329. *
  330. 160 CONTINUE
  331. *
  332. IF( J.GT.1 ) THEN
  333. ITEMP = MAXLOC( WORK( (N+J):(2*N) ), 1 )
  334. PVT = ITEMP + J - 1
  335. AJJ = WORK( N+PVT )
  336. IF( AJJ.LE.DSTOP.OR.DISNAN( AJJ ) ) THEN
  337. A( J, J ) = AJJ
  338. GO TO 190
  339. END IF
  340. END IF
  341. *
  342. IF( J.NE.PVT ) THEN
  343. *
  344. * Pivot OK, so can now swap pivot rows and columns
  345. *
  346. A( PVT, PVT ) = A( J, J )
  347. CALL ZSWAP( J-1, A( J, 1 ), LDA, A( PVT, 1 ), LDA )
  348. IF( PVT.LT.N )
  349. $ CALL ZSWAP( N-PVT, A( PVT+1, J ), 1, A( PVT+1, PVT ),
  350. $ 1 )
  351. DO 170 I = J + 1, PVT - 1
  352. ZTEMP = DCONJG( A( I, J ) )
  353. A( I, J ) = DCONJG( A( PVT, I ) )
  354. A( PVT, I ) = ZTEMP
  355. 170 CONTINUE
  356. A( PVT, J ) = DCONJG( A( PVT, J ) )
  357. *
  358. * Swap dot products and PIV
  359. *
  360. DTEMP = WORK( J )
  361. WORK( J ) = WORK( PVT )
  362. WORK( PVT ) = DTEMP
  363. ITEMP = PIV( PVT )
  364. PIV( PVT ) = PIV( J )
  365. PIV( J ) = ITEMP
  366. END IF
  367. *
  368. AJJ = SQRT( AJJ )
  369. A( J, J ) = AJJ
  370. *
  371. * Compute elements J+1:N of column J
  372. *
  373. IF( J.LT.N ) THEN
  374. CALL ZLACGV( J-1, A( J, 1 ), LDA )
  375. CALL ZGEMV( 'No Trans', N-J, J-1, -CONE, A( J+1, 1 ),
  376. $ LDA, A( J, 1 ), LDA, CONE, A( J+1, J ), 1 )
  377. CALL ZLACGV( J-1, A( J, 1 ), LDA )
  378. CALL ZDSCAL( N-J, ONE / AJJ, A( J+1, J ), 1 )
  379. END IF
  380. *
  381. 180 CONTINUE
  382. *
  383. END IF
  384. *
  385. * Ran to completion, A has full rank
  386. *
  387. RANK = N
  388. *
  389. GO TO 200
  390. 190 CONTINUE
  391. *
  392. * Rank is number of steps completed. Set INFO = 1 to signal
  393. * that the factorization cannot be used to solve a system.
  394. *
  395. RANK = J - 1
  396. INFO = 1
  397. *
  398. 200 CONTINUE
  399. RETURN
  400. *
  401. * End of ZPSTF2
  402. *
  403. END