You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarzb.f 9.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. *> \brief \b ZLARZB applies a block reflector or its conjugate-transpose to a general matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARZB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarzb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarzb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarzb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
  22. * LDV, T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLARZB applies a complex block reflector H or its transpose H**H
  40. *> to a complex distributed M-by-N C from the left or the right.
  41. *>
  42. *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] SIDE
  49. *> \verbatim
  50. *> SIDE is CHARACTER*1
  51. *> = 'L': apply H or H**H from the Left
  52. *> = 'R': apply H or H**H from the Right
  53. *> \endverbatim
  54. *>
  55. *> \param[in] TRANS
  56. *> \verbatim
  57. *> TRANS is CHARACTER*1
  58. *> = 'N': apply H (No transpose)
  59. *> = 'C': apply H**H (Conjugate transpose)
  60. *> \endverbatim
  61. *>
  62. *> \param[in] DIRECT
  63. *> \verbatim
  64. *> DIRECT is CHARACTER*1
  65. *> Indicates how H is formed from a product of elementary
  66. *> reflectors
  67. *> = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
  68. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  69. *> \endverbatim
  70. *>
  71. *> \param[in] STOREV
  72. *> \verbatim
  73. *> STOREV is CHARACTER*1
  74. *> Indicates how the vectors which define the elementary
  75. *> reflectors are stored:
  76. *> = 'C': Columnwise (not supported yet)
  77. *> = 'R': Rowwise
  78. *> \endverbatim
  79. *>
  80. *> \param[in] M
  81. *> \verbatim
  82. *> M is INTEGER
  83. *> The number of rows of the matrix C.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The number of columns of the matrix C.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] K
  93. *> \verbatim
  94. *> K is INTEGER
  95. *> The order of the matrix T (= the number of elementary
  96. *> reflectors whose product defines the block reflector).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] L
  100. *> \verbatim
  101. *> L is INTEGER
  102. *> The number of columns of the matrix V containing the
  103. *> meaningful part of the Householder reflectors.
  104. *> If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
  105. *> \endverbatim
  106. *>
  107. *> \param[in] V
  108. *> \verbatim
  109. *> V is COMPLEX*16 array, dimension (LDV,NV).
  110. *> If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
  111. *> \endverbatim
  112. *>
  113. *> \param[in] LDV
  114. *> \verbatim
  115. *> LDV is INTEGER
  116. *> The leading dimension of the array V.
  117. *> If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
  118. *> \endverbatim
  119. *>
  120. *> \param[in] T
  121. *> \verbatim
  122. *> T is COMPLEX*16 array, dimension (LDT,K)
  123. *> The triangular K-by-K matrix T in the representation of the
  124. *> block reflector.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDT
  128. *> \verbatim
  129. *> LDT is INTEGER
  130. *> The leading dimension of the array T. LDT >= K.
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] C
  134. *> \verbatim
  135. *> C is COMPLEX*16 array, dimension (LDC,N)
  136. *> On entry, the M-by-N matrix C.
  137. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDC
  141. *> \verbatim
  142. *> LDC is INTEGER
  143. *> The leading dimension of the array C. LDC >= max(1,M).
  144. *> \endverbatim
  145. *>
  146. *> \param[out] WORK
  147. *> \verbatim
  148. *> WORK is COMPLEX*16 array, dimension (LDWORK,K)
  149. *> \endverbatim
  150. *>
  151. *> \param[in] LDWORK
  152. *> \verbatim
  153. *> LDWORK is INTEGER
  154. *> The leading dimension of the array WORK.
  155. *> If SIDE = 'L', LDWORK >= max(1,N);
  156. *> if SIDE = 'R', LDWORK >= max(1,M).
  157. *> \endverbatim
  158. *
  159. * Authors:
  160. * ========
  161. *
  162. *> \author Univ. of Tennessee
  163. *> \author Univ. of California Berkeley
  164. *> \author Univ. of Colorado Denver
  165. *> \author NAG Ltd.
  166. *
  167. *> \ingroup complex16OTHERcomputational
  168. *
  169. *> \par Contributors:
  170. * ==================
  171. *>
  172. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  173. *
  174. *> \par Further Details:
  175. * =====================
  176. *>
  177. *> \verbatim
  178. *> \endverbatim
  179. *>
  180. * =====================================================================
  181. SUBROUTINE ZLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
  182. $ LDV, T, LDT, C, LDC, WORK, LDWORK )
  183. *
  184. * -- LAPACK computational routine --
  185. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  186. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  187. *
  188. * .. Scalar Arguments ..
  189. CHARACTER DIRECT, SIDE, STOREV, TRANS
  190. INTEGER K, L, LDC, LDT, LDV, LDWORK, M, N
  191. * ..
  192. * .. Array Arguments ..
  193. COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  194. $ WORK( LDWORK, * )
  195. * ..
  196. *
  197. * =====================================================================
  198. *
  199. * .. Parameters ..
  200. COMPLEX*16 ONE
  201. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  202. * ..
  203. * .. Local Scalars ..
  204. CHARACTER TRANST
  205. INTEGER I, INFO, J
  206. * ..
  207. * .. External Functions ..
  208. LOGICAL LSAME
  209. EXTERNAL LSAME
  210. * ..
  211. * .. External Subroutines ..
  212. EXTERNAL XERBLA, ZCOPY, ZGEMM, ZLACGV, ZTRMM
  213. * ..
  214. * .. Executable Statements ..
  215. *
  216. * Quick return if possible
  217. *
  218. IF( M.LE.0 .OR. N.LE.0 )
  219. $ RETURN
  220. *
  221. * Check for currently supported options
  222. *
  223. INFO = 0
  224. IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
  225. INFO = -3
  226. ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
  227. INFO = -4
  228. END IF
  229. IF( INFO.NE.0 ) THEN
  230. CALL XERBLA( 'ZLARZB', -INFO )
  231. RETURN
  232. END IF
  233. *
  234. IF( LSAME( TRANS, 'N' ) ) THEN
  235. TRANST = 'C'
  236. ELSE
  237. TRANST = 'N'
  238. END IF
  239. *
  240. IF( LSAME( SIDE, 'L' ) ) THEN
  241. *
  242. * Form H * C or H**H * C
  243. *
  244. * W( 1:n, 1:k ) = C( 1:k, 1:n )**H
  245. *
  246. DO 10 J = 1, K
  247. CALL ZCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  248. 10 CONTINUE
  249. *
  250. * W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
  251. * C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
  252. *
  253. IF( L.GT.0 )
  254. $ CALL ZGEMM( 'Transpose', 'Conjugate transpose', N, K, L,
  255. $ ONE, C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK,
  256. $ LDWORK )
  257. *
  258. * W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T or W( 1:m, 1:k ) * T
  259. *
  260. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
  261. $ LDT, WORK, LDWORK )
  262. *
  263. * C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
  264. *
  265. DO 30 J = 1, N
  266. DO 20 I = 1, K
  267. C( I, J ) = C( I, J ) - WORK( J, I )
  268. 20 CONTINUE
  269. 30 CONTINUE
  270. *
  271. * C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
  272. * V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
  273. *
  274. IF( L.GT.0 )
  275. $ CALL ZGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
  276. $ WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
  277. *
  278. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  279. *
  280. * Form C * H or C * H**H
  281. *
  282. * W( 1:m, 1:k ) = C( 1:m, 1:k )
  283. *
  284. DO 40 J = 1, K
  285. CALL ZCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  286. 40 CONTINUE
  287. *
  288. * W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
  289. * C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
  290. *
  291. IF( L.GT.0 )
  292. $ CALL ZGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
  293. $ C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
  294. *
  295. * W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T ) or
  296. * W( 1:m, 1:k ) * T**H
  297. *
  298. DO 50 J = 1, K
  299. CALL ZLACGV( K-J+1, T( J, J ), 1 )
  300. 50 CONTINUE
  301. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
  302. $ LDT, WORK, LDWORK )
  303. DO 60 J = 1, K
  304. CALL ZLACGV( K-J+1, T( J, J ), 1 )
  305. 60 CONTINUE
  306. *
  307. * C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
  308. *
  309. DO 80 J = 1, K
  310. DO 70 I = 1, M
  311. C( I, J ) = C( I, J ) - WORK( I, J )
  312. 70 CONTINUE
  313. 80 CONTINUE
  314. *
  315. * C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
  316. * W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
  317. *
  318. DO 90 J = 1, L
  319. CALL ZLACGV( K, V( 1, J ), 1 )
  320. 90 CONTINUE
  321. IF( L.GT.0 )
  322. $ CALL ZGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
  323. $ WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
  324. DO 100 J = 1, L
  325. CALL ZLACGV( K, V( 1, J ), 1 )
  326. 100 CONTINUE
  327. *
  328. END IF
  329. *
  330. RETURN
  331. *
  332. * End of ZLARZB
  333. *
  334. END