You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlantp.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. *> \brief \b ZLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANTP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlantp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlantp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlantp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER DIAG, NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANTP returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> triangular matrix A, supplied in packed form.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANTP
  44. *> \verbatim
  45. *>
  46. *> ZLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANTP as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the matrix A is upper or lower triangular.
  74. *> = 'U': Upper triangular
  75. *> = 'L': Lower triangular
  76. *> \endverbatim
  77. *>
  78. *> \param[in] DIAG
  79. *> \verbatim
  80. *> DIAG is CHARACTER*1
  81. *> Specifies whether or not the matrix A is unit triangular.
  82. *> = 'N': Non-unit triangular
  83. *> = 'U': Unit triangular
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The order of the matrix A. N >= 0. When N = 0, ZLANTP is
  90. *> set to zero.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] AP
  94. *> \verbatim
  95. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  96. *> The upper or lower triangular matrix A, packed columnwise in
  97. *> a linear array. The j-th column of A is stored in the array
  98. *> AP as follows:
  99. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  100. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  101. *> Note that when DIAG = 'U', the elements of the array AP
  102. *> corresponding to the diagonal elements of the matrix A are
  103. *> not referenced, but are assumed to be one.
  104. *> \endverbatim
  105. *>
  106. *> \param[out] WORK
  107. *> \verbatim
  108. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  109. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  110. *> referenced.
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \ingroup complex16OTHERauxiliary
  122. *
  123. * =====================================================================
  124. DOUBLE PRECISION FUNCTION ZLANTP( NORM, UPLO, DIAG, N, AP, WORK )
  125. *
  126. * -- LAPACK auxiliary routine --
  127. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  128. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  129. *
  130. * .. Scalar Arguments ..
  131. CHARACTER DIAG, NORM, UPLO
  132. INTEGER N
  133. * ..
  134. * .. Array Arguments ..
  135. DOUBLE PRECISION WORK( * )
  136. COMPLEX*16 AP( * )
  137. * ..
  138. *
  139. * =====================================================================
  140. *
  141. * .. Parameters ..
  142. DOUBLE PRECISION ONE, ZERO
  143. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  144. * ..
  145. * .. Local Scalars ..
  146. LOGICAL UDIAG
  147. INTEGER I, J, K
  148. DOUBLE PRECISION SCALE, SUM, VALUE
  149. * ..
  150. * .. External Functions ..
  151. LOGICAL LSAME, DISNAN
  152. EXTERNAL LSAME, DISNAN
  153. * ..
  154. * .. External Subroutines ..
  155. EXTERNAL ZLASSQ
  156. * ..
  157. * .. Intrinsic Functions ..
  158. INTRINSIC ABS, SQRT
  159. * ..
  160. * .. Executable Statements ..
  161. *
  162. IF( N.EQ.0 ) THEN
  163. VALUE = ZERO
  164. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  165. *
  166. * Find max(abs(A(i,j))).
  167. *
  168. K = 1
  169. IF( LSAME( DIAG, 'U' ) ) THEN
  170. VALUE = ONE
  171. IF( LSAME( UPLO, 'U' ) ) THEN
  172. DO 20 J = 1, N
  173. DO 10 I = K, K + J - 2
  174. SUM = ABS( AP( I ) )
  175. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  176. 10 CONTINUE
  177. K = K + J
  178. 20 CONTINUE
  179. ELSE
  180. DO 40 J = 1, N
  181. DO 30 I = K + 1, K + N - J
  182. SUM = ABS( AP( I ) )
  183. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  184. 30 CONTINUE
  185. K = K + N - J + 1
  186. 40 CONTINUE
  187. END IF
  188. ELSE
  189. VALUE = ZERO
  190. IF( LSAME( UPLO, 'U' ) ) THEN
  191. DO 60 J = 1, N
  192. DO 50 I = K, K + J - 1
  193. SUM = ABS( AP( I ) )
  194. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  195. 50 CONTINUE
  196. K = K + J
  197. 60 CONTINUE
  198. ELSE
  199. DO 80 J = 1, N
  200. DO 70 I = K, K + N - J
  201. SUM = ABS( AP( I ) )
  202. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  203. 70 CONTINUE
  204. K = K + N - J + 1
  205. 80 CONTINUE
  206. END IF
  207. END IF
  208. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  209. *
  210. * Find norm1(A).
  211. *
  212. VALUE = ZERO
  213. K = 1
  214. UDIAG = LSAME( DIAG, 'U' )
  215. IF( LSAME( UPLO, 'U' ) ) THEN
  216. DO 110 J = 1, N
  217. IF( UDIAG ) THEN
  218. SUM = ONE
  219. DO 90 I = K, K + J - 2
  220. SUM = SUM + ABS( AP( I ) )
  221. 90 CONTINUE
  222. ELSE
  223. SUM = ZERO
  224. DO 100 I = K, K + J - 1
  225. SUM = SUM + ABS( AP( I ) )
  226. 100 CONTINUE
  227. END IF
  228. K = K + J
  229. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  230. 110 CONTINUE
  231. ELSE
  232. DO 140 J = 1, N
  233. IF( UDIAG ) THEN
  234. SUM = ONE
  235. DO 120 I = K + 1, K + N - J
  236. SUM = SUM + ABS( AP( I ) )
  237. 120 CONTINUE
  238. ELSE
  239. SUM = ZERO
  240. DO 130 I = K, K + N - J
  241. SUM = SUM + ABS( AP( I ) )
  242. 130 CONTINUE
  243. END IF
  244. K = K + N - J + 1
  245. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  246. 140 CONTINUE
  247. END IF
  248. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  249. *
  250. * Find normI(A).
  251. *
  252. K = 1
  253. IF( LSAME( UPLO, 'U' ) ) THEN
  254. IF( LSAME( DIAG, 'U' ) ) THEN
  255. DO 150 I = 1, N
  256. WORK( I ) = ONE
  257. 150 CONTINUE
  258. DO 170 J = 1, N
  259. DO 160 I = 1, J - 1
  260. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  261. K = K + 1
  262. 160 CONTINUE
  263. K = K + 1
  264. 170 CONTINUE
  265. ELSE
  266. DO 180 I = 1, N
  267. WORK( I ) = ZERO
  268. 180 CONTINUE
  269. DO 200 J = 1, N
  270. DO 190 I = 1, J
  271. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  272. K = K + 1
  273. 190 CONTINUE
  274. 200 CONTINUE
  275. END IF
  276. ELSE
  277. IF( LSAME( DIAG, 'U' ) ) THEN
  278. DO 210 I = 1, N
  279. WORK( I ) = ONE
  280. 210 CONTINUE
  281. DO 230 J = 1, N
  282. K = K + 1
  283. DO 220 I = J + 1, N
  284. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  285. K = K + 1
  286. 220 CONTINUE
  287. 230 CONTINUE
  288. ELSE
  289. DO 240 I = 1, N
  290. WORK( I ) = ZERO
  291. 240 CONTINUE
  292. DO 260 J = 1, N
  293. DO 250 I = J, N
  294. WORK( I ) = WORK( I ) + ABS( AP( K ) )
  295. K = K + 1
  296. 250 CONTINUE
  297. 260 CONTINUE
  298. END IF
  299. END IF
  300. VALUE = ZERO
  301. DO 270 I = 1, N
  302. SUM = WORK( I )
  303. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  304. 270 CONTINUE
  305. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  306. *
  307. * Find normF(A).
  308. *
  309. IF( LSAME( UPLO, 'U' ) ) THEN
  310. IF( LSAME( DIAG, 'U' ) ) THEN
  311. SCALE = ONE
  312. SUM = N
  313. K = 2
  314. DO 280 J = 2, N
  315. CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
  316. K = K + J
  317. 280 CONTINUE
  318. ELSE
  319. SCALE = ZERO
  320. SUM = ONE
  321. K = 1
  322. DO 290 J = 1, N
  323. CALL ZLASSQ( J, AP( K ), 1, SCALE, SUM )
  324. K = K + J
  325. 290 CONTINUE
  326. END IF
  327. ELSE
  328. IF( LSAME( DIAG, 'U' ) ) THEN
  329. SCALE = ONE
  330. SUM = N
  331. K = 2
  332. DO 300 J = 1, N - 1
  333. CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
  334. K = K + N - J + 1
  335. 300 CONTINUE
  336. ELSE
  337. SCALE = ZERO
  338. SUM = ONE
  339. K = 1
  340. DO 310 J = 1, N
  341. CALL ZLASSQ( N-J+1, AP( K ), 1, SCALE, SUM )
  342. K = K + N - J + 1
  343. 310 CONTINUE
  344. END IF
  345. END IF
  346. VALUE = SCALE*SQRT( SUM )
  347. END IF
  348. *
  349. ZLANTP = VALUE
  350. RETURN
  351. *
  352. * End of ZLANTP
  353. *
  354. END