|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837 |
- *> \brief \b SLAQR5 performs a single small-bulge multi-shift QR sweep.
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SLAQR5 + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr5.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr5.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr5.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
- * SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
- * LDU, NV, WV, LDWV, NH, WH, LDWH )
- *
- * .. Scalar Arguments ..
- * INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- * $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- * LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- * REAL H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
- * $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
- * $ Z( LDZ, * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SLAQR5, called by SLAQR0, performs a
- *> single small-bulge multi-shift QR sweep.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] WANTT
- *> \verbatim
- *> WANTT is LOGICAL
- *> WANTT = .true. if the quasi-triangular Schur factor
- *> is being computed. WANTT is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] WANTZ
- *> \verbatim
- *> WANTZ is LOGICAL
- *> WANTZ = .true. if the orthogonal Schur factor is being
- *> computed. WANTZ is set to .false. otherwise.
- *> \endverbatim
- *>
- *> \param[in] KACC22
- *> \verbatim
- *> KACC22 is INTEGER with value 0, 1, or 2.
- *> Specifies the computation mode of far-from-diagonal
- *> orthogonal updates.
- *> = 0: SLAQR5 does not accumulate reflections and does not
- *> use matrix-matrix multiply to update far-from-diagonal
- *> matrix entries.
- *> = 1: SLAQR5 accumulates reflections and uses matrix-matrix
- *> multiply to update the far-from-diagonal matrix entries.
- *> = 2: Same as KACC22 = 1. This option used to enable exploiting
- *> the 2-by-2 structure during matrix multiplications, but
- *> this is no longer supported.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> N is the order of the Hessenberg matrix H upon which this
- *> subroutine operates.
- *> \endverbatim
- *>
- *> \param[in] KTOP
- *> \verbatim
- *> KTOP is INTEGER
- *> \endverbatim
- *>
- *> \param[in] KBOT
- *> \verbatim
- *> KBOT is INTEGER
- *> These are the first and last rows and columns of an
- *> isolated diagonal block upon which the QR sweep is to be
- *> applied. It is assumed without a check that
- *> either KTOP = 1 or H(KTOP,KTOP-1) = 0
- *> and
- *> either KBOT = N or H(KBOT+1,KBOT) = 0.
- *> \endverbatim
- *>
- *> \param[in] NSHFTS
- *> \verbatim
- *> NSHFTS is INTEGER
- *> NSHFTS gives the number of simultaneous shifts. NSHFTS
- *> must be positive and even.
- *> \endverbatim
- *>
- *> \param[in,out] SR
- *> \verbatim
- *> SR is REAL array, dimension (NSHFTS)
- *> \endverbatim
- *>
- *> \param[in,out] SI
- *> \verbatim
- *> SI is REAL array, dimension (NSHFTS)
- *> SR contains the real parts and SI contains the imaginary
- *> parts of the NSHFTS shifts of origin that define the
- *> multi-shift QR sweep. On output SR and SI may be
- *> reordered.
- *> \endverbatim
- *>
- *> \param[in,out] H
- *> \verbatim
- *> H is REAL array, dimension (LDH,N)
- *> On input H contains a Hessenberg matrix. On output a
- *> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
- *> to the isolated diagonal block in rows and columns KTOP
- *> through KBOT.
- *> \endverbatim
- *>
- *> \param[in] LDH
- *> \verbatim
- *> LDH is INTEGER
- *> LDH is the leading dimension of H just as declared in the
- *> calling procedure. LDH >= MAX(1,N).
- *> \endverbatim
- *>
- *> \param[in] ILOZ
- *> \verbatim
- *> ILOZ is INTEGER
- *> \endverbatim
- *>
- *> \param[in] IHIZ
- *> \verbatim
- *> IHIZ is INTEGER
- *> Specify the rows of Z to which transformations must be
- *> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
- *> \endverbatim
- *>
- *> \param[in,out] Z
- *> \verbatim
- *> Z is REAL array, dimension (LDZ,IHIZ)
- *> If WANTZ = .TRUE., then the QR Sweep orthogonal
- *> similarity transformation is accumulated into
- *> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
- *> If WANTZ = .FALSE., then Z is unreferenced.
- *> \endverbatim
- *>
- *> \param[in] LDZ
- *> \verbatim
- *> LDZ is INTEGER
- *> LDA is the leading dimension of Z just as declared in
- *> the calling procedure. LDZ >= N.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is REAL array, dimension (LDV,NSHFTS/2)
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> LDV is the leading dimension of V as declared in the
- *> calling procedure. LDV >= 3.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is REAL array, dimension (LDU,2*NSHFTS)
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> LDU is the leading dimension of U just as declared in the
- *> in the calling subroutine. LDU >= 2*NSHFTS.
- *> \endverbatim
- *>
- *> \param[in] NV
- *> \verbatim
- *> NV is INTEGER
- *> NV is the number of rows in WV agailable for workspace.
- *> NV >= 1.
- *> \endverbatim
- *>
- *> \param[out] WV
- *> \verbatim
- *> WV is REAL array, dimension (LDWV,2*NSHFTS)
- *> \endverbatim
- *>
- *> \param[in] LDWV
- *> \verbatim
- *> LDWV is INTEGER
- *> LDWV is the leading dimension of WV as declared in the
- *> in the calling subroutine. LDWV >= NV.
- *> \endverbatim
- *
- *> \param[in] NH
- *> \verbatim
- *> NH is INTEGER
- *> NH is the number of columns in array WH available for
- *> workspace. NH >= 1.
- *> \endverbatim
- *>
- *> \param[out] WH
- *> \verbatim
- *> WH is REAL array, dimension (LDWH,NH)
- *> \endverbatim
- *>
- *> \param[in] LDWH
- *> \verbatim
- *> LDWH is INTEGER
- *> Leading dimension of WH just as declared in the
- *> calling procedure. LDWH >= 2*NSHFTS.
- *> \endverbatim
- *>
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \ingroup realOTHERauxiliary
- *
- *> \par Contributors:
- * ==================
- *>
- *> Karen Braman and Ralph Byers, Department of Mathematics,
- *> University of Kansas, USA
- *>
- *> Lars Karlsson, Daniel Kressner, and Bruno Lang
- *>
- *> Thijs Steel, Department of Computer science,
- *> KU Leuven, Belgium
- *
- *> \par References:
- * ================
- *>
- *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
- *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
- *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
- *> 929--947, 2002.
- *>
- *> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
- *> chains of bulges in multishift QR algorithms.
- *> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014).
- *>
- * =====================================================================
- SUBROUTINE SLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
- $ SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
- $ LDU, NV, WV, LDWV, NH, WH, LDWH )
- IMPLICIT NONE
- *
- * -- LAPACK auxiliary routine --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- *
- * .. Scalar Arguments ..
- INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
- $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
- LOGICAL WANTT, WANTZ
- * ..
- * .. Array Arguments ..
- REAL H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
- $ V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
- $ Z( LDZ, * )
- * ..
- *
- * ================================================================
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0e0, ONE = 1.0e0 )
- * ..
- * .. Local Scalars ..
- REAL ALPHA, BETA, H11, H12, H21, H22, REFSUM,
- $ SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, T1, T2,
- $ T3, TST1, TST2, ULP
- INTEGER I, I2, I4, INCOL, J, JBOT, JCOL, JLEN,
- $ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
- $ M, M22, MBOT, MTOP, NBMPS, NDCOL,
- $ NS, NU
- LOGICAL ACCUM, BMP22
- * ..
- * .. External Functions ..
- REAL SLAMCH
- EXTERNAL SLAMCH
- * ..
- * .. Intrinsic Functions ..
- *
- INTRINSIC ABS, MAX, MIN, MOD, REAL
- * ..
- * .. Local Arrays ..
- REAL VT( 3 )
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEMM, SLABAD, SLACPY, SLAQR1, SLARFG, SLASET,
- $ STRMM
- * ..
- * .. Executable Statements ..
- *
- * ==== If there are no shifts, then there is nothing to do. ====
- *
- IF( NSHFTS.LT.2 )
- $ RETURN
- *
- * ==== If the active block is empty or 1-by-1, then there
- * . is nothing to do. ====
- *
- IF( KTOP.GE.KBOT )
- $ RETURN
- *
- * ==== Shuffle shifts into pairs of real shifts and pairs
- * . of complex conjugate shifts assuming complex
- * . conjugate shifts are already adjacent to one
- * . another. ====
- *
- DO 10 I = 1, NSHFTS - 2, 2
- IF( SI( I ).NE.-SI( I+1 ) ) THEN
- *
- SWAP = SR( I )
- SR( I ) = SR( I+1 )
- SR( I+1 ) = SR( I+2 )
- SR( I+2 ) = SWAP
- *
- SWAP = SI( I )
- SI( I ) = SI( I+1 )
- SI( I+1 ) = SI( I+2 )
- SI( I+2 ) = SWAP
- END IF
- 10 CONTINUE
- *
- * ==== NSHFTS is supposed to be even, but if it is odd,
- * . then simply reduce it by one. The shuffle above
- * . ensures that the dropped shift is real and that
- * . the remaining shifts are paired. ====
- *
- NS = NSHFTS - MOD( NSHFTS, 2 )
- *
- * ==== Machine constants for deflation ====
- *
- SAFMIN = SLAMCH( 'SAFE MINIMUM' )
- SAFMAX = ONE / SAFMIN
- CALL SLABAD( SAFMIN, SAFMAX )
- ULP = SLAMCH( 'PRECISION' )
- SMLNUM = SAFMIN*( REAL( N ) / ULP )
- *
- * ==== Use accumulated reflections to update far-from-diagonal
- * . entries ? ====
- *
- ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
- *
- * ==== clear trash ====
- *
- IF( KTOP+2.LE.KBOT )
- $ H( KTOP+2, KTOP ) = ZERO
- *
- * ==== NBMPS = number of 2-shift bulges in the chain ====
- *
- NBMPS = NS / 2
- *
- * ==== KDU = width of slab ====
- *
- KDU = 4*NBMPS
- *
- * ==== Create and chase chains of NBMPS bulges ====
- *
- DO 180 INCOL = KTOP - 2*NBMPS + 1, KBOT - 2, 2*NBMPS
- *
- * JTOP = Index from which updates from the right start.
- *
- IF( ACCUM ) THEN
- JTOP = MAX( KTOP, INCOL )
- ELSE IF( WANTT ) THEN
- JTOP = 1
- ELSE
- JTOP = KTOP
- END IF
- *
- NDCOL = INCOL + KDU
- IF( ACCUM )
- $ CALL SLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
- *
- * ==== Near-the-diagonal bulge chase. The following loop
- * . performs the near-the-diagonal part of a small bulge
- * . multi-shift QR sweep. Each 4*NBMPS column diagonal
- * . chunk extends from column INCOL to column NDCOL
- * . (including both column INCOL and column NDCOL). The
- * . following loop chases a 2*NBMPS+1 column long chain of
- * . NBMPS bulges 2*NBMPS-1 columns to the right. (INCOL
- * . may be less than KTOP and and NDCOL may be greater than
- * . KBOT indicating phantom columns from which to chase
- * . bulges before they are actually introduced or to which
- * . to chase bulges beyond column KBOT.) ====
- *
- DO 145 KRCOL = INCOL, MIN( INCOL+2*NBMPS-1, KBOT-2 )
- *
- * ==== Bulges number MTOP to MBOT are active double implicit
- * . shift bulges. There may or may not also be small
- * . 2-by-2 bulge, if there is room. The inactive bulges
- * . (if any) must wait until the active bulges have moved
- * . down the diagonal to make room. The phantom matrix
- * . paradigm described above helps keep track. ====
- *
- MTOP = MAX( 1, ( KTOP-KRCOL ) / 2+1 )
- MBOT = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 2 )
- M22 = MBOT + 1
- BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+2*( M22-1 ) ).EQ.
- $ ( KBOT-2 )
- *
- * ==== Generate reflections to chase the chain right
- * . one column. (The minimum value of K is KTOP-1.) ====
- *
- IF ( BMP22 ) THEN
- *
- * ==== Special case: 2-by-2 reflection at bottom treated
- * . separately ====
- *
- K = KRCOL + 2*( M22-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL SLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
- $ SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
- $ V( 1, M22 ) )
- BETA = V( 1, M22 )
- CALL SLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- ELSE
- BETA = H( K+1, K )
- V( 2, M22 ) = H( K+2, K )
- CALL SLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- END IF
-
- *
- * ==== Perform update from right within
- * . computational window. ====
- *
- T1 = V( 1, M22 )
- T2 = T1*V( 2, M22 )
- DO 30 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = H( J, K+1 ) + V( 2, M22 )*H( J, K+2 )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
- H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
- 30 CONTINUE
- *
- * ==== Perform update from left within
- * . computational window. ====
- *
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- T1 = V( 1, M22 )
- T2 = T1*V( 2, M22 )
- DO 40 J = K+1, JBOT
- REFSUM = H( K+1, J ) + V( 2, M22 )*H( K+2, J )
- H( K+1, J ) = H( K+1, J ) - REFSUM*T1
- H( K+2, J ) = H( K+2, J ) - REFSUM*T2
- 40 CONTINUE
- *
- * ==== The following convergence test requires that
- * . the tradition small-compared-to-nearby-diagonals
- * . criterion and the Ahues & Tisseur (LAWN 122, 1997)
- * . criteria both be satisfied. The latter improves
- * . accuracy in some examples. Falling back on an
- * . alternate convergence criterion when TST1 or TST2
- * . is zero (as done here) is traditional but probably
- * . unnecessary. ====
- *
- IF( K.GE.KTOP ) THEN
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
- IF( TST1.EQ.ZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + ABS( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + ABS( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + ABS( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + ABS( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + ABS( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + ABS( H( K+4, K+1 ) )
- END IF
- IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
- $ THEN
- H12 = MAX( ABS( H( K+1, K ) ),
- $ ABS( H( K, K+1 ) ) )
- H21 = MIN( ABS( H( K+1, K ) ),
- $ ABS( H( K, K+1 ) ) )
- H11 = MAX( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
- *
- IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) ) THEN
- H( K+1, K ) = ZERO
- END IF
- END IF
- END IF
- END IF
- *
- * ==== Accumulate orthogonal transformations. ====
- *
- IF( ACCUM ) THEN
- KMS = K - INCOL
- T1 = V( 1, M22 )
- T2 = T1*V( 2, M22 )
- DO 50 J = MAX( 1, KTOP-INCOL ), KDU
- REFSUM = U( J, KMS+1 ) + V( 2, M22 )*U( J, KMS+2 )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
- U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
- 50 CONTINUE
- ELSE IF( WANTZ ) THEN
- T1 = V( 1, M22 )
- T2 = T1*V( 2, M22 )
- DO 60 J = ILOZ, IHIZ
- REFSUM = Z( J, K+1 )+V( 2, M22 )*Z( J, K+2 )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
- Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
- 60 CONTINUE
- END IF
- END IF
- *
- * ==== Normal case: Chain of 3-by-3 reflections ====
- *
- DO 80 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- IF( K.EQ.KTOP-1 ) THEN
- CALL SLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ V( 1, M ) )
- ALPHA = V( 1, M )
- CALL SLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
- ELSE
- *
- * ==== Perform delayed transformation of row below
- * . Mth bulge. Exploit fact that first two elements
- * . of row are actually zero. ====
- *
- T1 = V( 1, M )
- T2 = T1*V( 2, M )
- T3 = T1*V( 3, M )
- REFSUM = V( 3, M )*H( K+3, K+2 )
- H( K+3, K ) = -REFSUM*T1
- H( K+3, K+1 ) = -REFSUM*T2
- H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3
- *
- * ==== Calculate reflection to move
- * . Mth bulge one step. ====
- *
- BETA = H( K+1, K )
- V( 2, M ) = H( K+2, K )
- V( 3, M ) = H( K+3, K )
- CALL SLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
- *
- * ==== A Bulge may collapse because of vigilant
- * . deflation or destructive underflow. In the
- * . underflow case, try the two-small-subdiagonals
- * . trick to try to reinflate the bulge. ====
- *
- IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
- $ ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
- *
- * ==== Typical case: not collapsed (yet). ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Atypical case: collapsed. Attempt to
- * . reintroduce ignoring H(K+1,K) and H(K+2,K).
- * . If the fill resulting from the new
- * . reflector is too large, then abandon it.
- * . Otherwise, use the new one. ====
- *
- CALL SLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
- $ SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
- $ VT )
- ALPHA = VT( 1 )
- CALL SLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
- T1 = VT( 1 )
- T2 = T1*VT( 2 )
- T3 = T2*VT( 3 )
- REFSUM = H( K+1, K )+VT( 2 )*H( K+2, K )
- *
- IF( ABS( H( K+2, K )-REFSUM*T2 )+
- $ ABS( REFSUM*T3 ).GT.ULP*
- $ ( ABS( H( K, K ) )+ABS( H( K+1,
- $ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
- *
- * ==== Starting a new bulge here would
- * . create non-negligible fill. Use
- * . the old one with trepidation. ====
- *
- H( K+1, K ) = BETA
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- ELSE
- *
- * ==== Starting a new bulge here would
- * . create only negligible fill.
- * . Replace the old reflector with
- * . the new one. ====
- *
- H( K+1, K ) = H( K+1, K ) - REFSUM*T1
- H( K+2, K ) = ZERO
- H( K+3, K ) = ZERO
- V( 1, M ) = VT( 1 )
- V( 2, M ) = VT( 2 )
- V( 3, M ) = VT( 3 )
- END IF
- END IF
- END IF
- *
- * ==== Apply reflection from the right and
- * . the first column of update from the left.
- * . These updates are required for the vigilant
- * . deflation check. We still delay most of the
- * . updates from the left for efficiency. ====
- *
- T1 = V( 1, M )
- T2 = T1*V( 2, M )
- T3 = T1*V( 3, M )
- DO 70 J = JTOP, MIN( KBOT, K+3 )
- REFSUM = H( J, K+1 ) + V( 2, M )*H( J, K+2 )
- $ + V( 3, M )*H( J, K+3 )
- H( J, K+1 ) = H( J, K+1 ) - REFSUM*T1
- H( J, K+2 ) = H( J, K+2 ) - REFSUM*T2
- H( J, K+3 ) = H( J, K+3 ) - REFSUM*T3
- 70 CONTINUE
- *
- * ==== Perform update from left for subsequent
- * . column. ====
- *
- REFSUM = H( K+1, K+1 ) + V( 2, M )*H( K+2, K+1 )
- $ + V( 3, M )*H( K+3, K+1 )
- H( K+1, K+1 ) = H( K+1, K+1 ) - REFSUM*T1
- H( K+2, K+1 ) = H( K+2, K+1 ) - REFSUM*T2
- H( K+3, K+1 ) = H( K+3, K+1 ) - REFSUM*T3
- *
- * ==== The following convergence test requires that
- * . the tradition small-compared-to-nearby-diagonals
- * . criterion and the Ahues & Tisseur (LAWN 122, 1997)
- * . criteria both be satisfied. The latter improves
- * . accuracy in some examples. Falling back on an
- * . alternate convergence criterion when TST1 or TST2
- * . is zero (as done here) is traditional but probably
- * . unnecessary. ====
- *
- IF( K.LT.KTOP)
- $ CYCLE
- IF( H( K+1, K ).NE.ZERO ) THEN
- TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
- IF( TST1.EQ.ZERO ) THEN
- IF( K.GE.KTOP+1 )
- $ TST1 = TST1 + ABS( H( K, K-1 ) )
- IF( K.GE.KTOP+2 )
- $ TST1 = TST1 + ABS( H( K, K-2 ) )
- IF( K.GE.KTOP+3 )
- $ TST1 = TST1 + ABS( H( K, K-3 ) )
- IF( K.LE.KBOT-2 )
- $ TST1 = TST1 + ABS( H( K+2, K+1 ) )
- IF( K.LE.KBOT-3 )
- $ TST1 = TST1 + ABS( H( K+3, K+1 ) )
- IF( K.LE.KBOT-4 )
- $ TST1 = TST1 + ABS( H( K+4, K+1 ) )
- END IF
- IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
- $ THEN
- H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
- H11 = MAX( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- H22 = MIN( ABS( H( K+1, K+1 ) ),
- $ ABS( H( K, K )-H( K+1, K+1 ) ) )
- SCL = H11 + H12
- TST2 = H22*( H11 / SCL )
- *
- IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
- $ MAX( SMLNUM, ULP*TST2 ) ) THEN
- H( K+1, K ) = ZERO
- END IF
- END IF
- END IF
- 80 CONTINUE
- *
- * ==== Multiply H by reflections from the left ====
- *
- IF( ACCUM ) THEN
- JBOT = MIN( NDCOL, KBOT )
- ELSE IF( WANTT ) THEN
- JBOT = N
- ELSE
- JBOT = KBOT
- END IF
- *
- DO 100 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- T1 = V( 1, M )
- T2 = T1*V( 2, M )
- T3 = T1*V( 3, M )
- DO 90 J = MAX( KTOP, KRCOL + 2*M ), JBOT
- REFSUM = H( K+1, J ) + V( 2, M )*H( K+2, J )
- $ + V( 3, M )*H( K+3, J )
- H( K+1, J ) = H( K+1, J ) - REFSUM*T1
- H( K+2, J ) = H( K+2, J ) - REFSUM*T2
- H( K+3, J ) = H( K+3, J ) - REFSUM*T3
- 90 CONTINUE
- 100 CONTINUE
- *
- * ==== Accumulate orthogonal transformations. ====
- *
- IF( ACCUM ) THEN
- *
- * ==== Accumulate U. (If needed, update Z later
- * . with an efficient matrix-matrix
- * . multiply.) ====
- *
- DO 120 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- KMS = K - INCOL
- I2 = MAX( 1, KTOP-INCOL )
- I2 = MAX( I2, KMS-(KRCOL-INCOL)+1 )
- I4 = MIN( KDU, KRCOL + 2*( MBOT-1 ) - INCOL + 5 )
- T1 = V( 1, M )
- T2 = T1*V( 2, M )
- T3 = T1*V( 3, M )
- DO 110 J = I2, I4
- REFSUM = U( J, KMS+1 ) + V( 2, M )*U( J, KMS+2 )
- $ + V( 3, M )*U( J, KMS+3 )
- U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM*T1
- U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*T2
- U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*T3
- 110 CONTINUE
- 120 CONTINUE
- ELSE IF( WANTZ ) THEN
- *
- * ==== U is not accumulated, so update Z
- * . now by multiplying by reflections
- * . from the right. ====
- *
- DO 140 M = MBOT, MTOP, -1
- K = KRCOL + 2*( M-1 )
- T1 = V( 1, M )
- T2 = T1*V( 2, M )
- T3 = T1*V( 3, M )
- DO 130 J = ILOZ, IHIZ
- REFSUM = Z( J, K+1 ) + V( 2, M )*Z( J, K+2 )
- $ + V( 3, M )*Z( J, K+3 )
- Z( J, K+1 ) = Z( J, K+1 ) - REFSUM*T1
- Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*T2
- Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*T3
- 130 CONTINUE
- 140 CONTINUE
- END IF
- *
- * ==== End of near-the-diagonal bulge chase. ====
- *
- 145 CONTINUE
- *
- * ==== Use U (if accumulated) to update far-from-diagonal
- * . entries in H. If required, use U to update Z as
- * . well. ====
- *
- IF( ACCUM ) THEN
- IF( WANTT ) THEN
- JTOP = 1
- JBOT = N
- ELSE
- JTOP = KTOP
- JBOT = KBOT
- END IF
- K1 = MAX( 1, KTOP-INCOL )
- NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
- *
- * ==== Horizontal Multiply ====
- *
- DO 150 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
- JLEN = MIN( NH, JBOT-JCOL+1 )
- CALL SGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
- $ LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
- $ LDWH )
- CALL SLACPY( 'ALL', NU, JLEN, WH, LDWH,
- $ H( INCOL+K1, JCOL ), LDH )
- 150 CONTINUE
- *
- * ==== Vertical multiply ====
- *
- DO 160 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
- JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
- CALL SGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL SLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ H( JROW, INCOL+K1 ), LDH )
- 160 CONTINUE
- *
- * ==== Z multiply (also vertical) ====
- *
- IF( WANTZ ) THEN
- DO 170 JROW = ILOZ, IHIZ, NV
- JLEN = MIN( NV, IHIZ-JROW+1 )
- CALL SGEMM( 'N', 'N', JLEN, NU, NU, ONE,
- $ Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
- $ LDU, ZERO, WV, LDWV )
- CALL SLACPY( 'ALL', JLEN, NU, WV, LDWV,
- $ Z( JROW, INCOL+K1 ), LDZ )
- 170 CONTINUE
- END IF
- END IF
- 180 CONTINUE
- *
- * ==== End of SLAQR5 ====
- *
- END
|