You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqp3rk.c 35 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* -- translated by f2c (version 20000121).
  484. You must link the resulting object file with the libraries:
  485. -lf2c -lm (in that order)
  486. */
  487. /* Table of constant values */
  488. static integer c__1 = 1;
  489. static real c_b7 = -1.f;
  490. static real c_b8 = 1.f;
  491. static real c_b30 = 0.f;
  492. /* Subroutine */ int slaqp3rk_(integer *m, integer *n, integer *nrhs, integer
  493. *ioffset, integer *nb, real *abstol, real *reltol, integer *kp1, real
  494. *maxc2nrm, real *a, integer *lda, logical *done, integer *kb, real *
  495. maxc2nrmk, real *relmaxc2nrmk, integer *jpiv, real *tau, real *vn1,
  496. real *vn2, real *auxv, real *f, integer *ldf, integer *iwork, integer
  497. *info)
  498. {
  499. /* System generated locals */
  500. integer a_dim1, a_offset, f_dim1, f_offset, i__1, i__2;
  501. real r__1, r__2;
  502. /* Local variables */
  503. real temp, temp2;
  504. extern real snrm2_(integer *, real *, integer *);
  505. integer i__, j, k;
  506. real tol3z;
  507. extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
  508. integer *, real *, real *, integer *, real *, integer *, real *,
  509. real *, integer *);
  510. integer itemp;
  511. extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
  512. real *, integer *, real *, integer *, real *, real *, integer *);
  513. integer minmnfact;
  514. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  515. integer *);
  516. real myhugeval;
  517. integer minmnupdt, if__, kp;
  518. extern real slamch_(char *);
  519. extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
  520. real *);
  521. integer lsticc;
  522. extern integer isamax_(integer *, real *, integer *);
  523. extern logical sisnan_(real *);
  524. real aik;
  525. /* -- LAPACK auxiliary routine -- */
  526. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  527. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  528. /* ===================================================================== */
  529. /* Initialize INFO */
  530. /* Parameter adjustments */
  531. a_dim1 = *lda;
  532. a_offset = 1 + a_dim1 * 1;
  533. a -= a_offset;
  534. --jpiv;
  535. --tau;
  536. --vn1;
  537. --vn2;
  538. --auxv;
  539. f_dim1 = *ldf;
  540. f_offset = 1 + f_dim1 * 1;
  541. f -= f_offset;
  542. --iwork;
  543. /* Function Body */
  544. *info = 0;
  545. /* MINMNFACT in the smallest dimension of the submatrix */
  546. /* A(IOFFSET+1:M,1:N) to be factorized. */
  547. /* Computing MIN */
  548. i__1 = *m - *ioffset;
  549. minmnfact = f2cmin(i__1,*n);
  550. /* Computing MIN */
  551. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  552. minmnupdt = f2cmin(i__1,i__2);
  553. *nb = f2cmin(*nb,minmnfact);
  554. tol3z = sqrt(slamch_("Epsilon"));
  555. myhugeval = slamch_("Overflow");
  556. /* Compute factorization in a while loop over NB columns, */
  557. /* K is the column index in the block A(1:M,1:N). */
  558. k = 0;
  559. lsticc = 0;
  560. *done = FALSE_;
  561. while(k < *nb && lsticc == 0) {
  562. ++k;
  563. i__ = *ioffset + k;
  564. if (i__ == 1) {
  565. /* We are at the first column of the original whole matrix A_orig, */
  566. /* therefore we use the computed KP1 and MAXC2NRM from the */
  567. /* main routine. */
  568. kp = *kp1;
  569. } else {
  570. /* Determine the pivot column in K-th step, i.e. the index */
  571. /* of the column with the maximum 2-norm in the */
  572. /* submatrix A(I:M,K:N). */
  573. i__1 = *n - k + 1;
  574. kp = k - 1 + isamax_(&i__1, &vn1[k], &c__1);
  575. /* Determine the maximum column 2-norm and the relative maximum */
  576. /* column 2-norm of the submatrix A(I:M,K:N) in step K. */
  577. *maxc2nrmk = vn1[kp];
  578. /* ============================================================ */
  579. /* Check if the submatrix A(I:M,K:N) contains NaN, set */
  580. /* INFO parameter to the column number, where the first NaN */
  581. /* is found and return from the routine. */
  582. /* We need to check the condition only if the */
  583. /* column index (same as row index) of the original whole */
  584. /* matrix is larger than 1, since the condition for whole */
  585. /* original matrix is checked in the main routine. */
  586. if (sisnan_(maxc2nrmk)) {
  587. *done = TRUE_;
  588. /* Set KB, the number of factorized partial columns */
  589. /* that are non-zero in each step in the block, */
  590. /* i.e. the rank of the factor R. */
  591. /* Set IF, the number of processed rows in the block, which */
  592. /* is the same as the number of processed rows in */
  593. /* the original whole matrix A_orig. */
  594. *kb = k - 1;
  595. if__ = i__ - 1;
  596. *info = *kb + kp;
  597. /* Set RELMAXC2NRMK to NaN. */
  598. *relmaxc2nrmk = *maxc2nrmk;
  599. /* There is no need to apply the block reflector to the */
  600. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  601. /* since the submatrix contains NaN and we stop */
  602. /* the computation. */
  603. /* But, we need to apply the block reflector to the residual */
  604. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  605. /* residual right hand sides exist. This occurs */
  606. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  607. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  608. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  609. if (*nrhs > 0 && *kb < *m - *ioffset) {
  610. i__1 = *m - if__;
  611. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  612. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  613. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  614. a_dim1], lda);
  615. }
  616. /* There is no need to recompute the 2-norm of the */
  617. /* difficult columns, since we stop the factorization. */
  618. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  619. /* undefined elements. */
  620. /* Return from the routine. */
  621. return 0;
  622. }
  623. /* Quick return, if the submatrix A(I:M,K:N) is */
  624. /* a zero matrix. We need to check it only if the column index */
  625. /* (same as row index) is larger than 1, since the condition */
  626. /* for the whole original matrix A_orig is checked in the main */
  627. /* routine. */
  628. if (*maxc2nrmk == 0.f) {
  629. *done = TRUE_;
  630. /* Set KB, the number of factorized partial columns */
  631. /* that are non-zero in each step in the block, */
  632. /* i.e. the rank of the factor R. */
  633. /* Set IF, the number of processed rows in the block, which */
  634. /* is the same as the number of processed rows in */
  635. /* the original whole matrix A_orig. */
  636. *kb = k - 1;
  637. if__ = i__ - 1;
  638. *relmaxc2nrmk = 0.f;
  639. /* There is no need to apply the block reflector to the */
  640. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  641. /* since the submatrix is zero and we stop the computation. */
  642. /* But, we need to apply the block reflector to the residual */
  643. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  644. /* residual right hand sides exist. This occurs */
  645. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  646. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  647. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  648. if (*nrhs > 0 && *kb < *m - *ioffset) {
  649. i__1 = *m - if__;
  650. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &
  651. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 +
  652. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*n + 1) *
  653. a_dim1], lda);
  654. }
  655. /* There is no need to recompute the 2-norm of the */
  656. /* difficult columns, since we stop the factorization. */
  657. /* Set TAUs corresponding to the columns that were not */
  658. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  659. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  660. i__1 = minmnfact;
  661. for (j = k; j <= i__1; ++j) {
  662. tau[j] = 0.f;
  663. }
  664. /* Return from the routine. */
  665. return 0;
  666. }
  667. /* ============================================================ */
  668. /* Check if the submatrix A(I:M,K:N) contains Inf, */
  669. /* set INFO parameter to the column number, where */
  670. /* the first Inf is found plus N, and continue */
  671. /* the computation. */
  672. /* We need to check the condition only if the */
  673. /* column index (same as row index) of the original whole */
  674. /* matrix is larger than 1, since the condition for whole */
  675. /* original matrix is checked in the main routine. */
  676. if (*info == 0 && *maxc2nrmk > myhugeval) {
  677. *info = *n + k - 1 + kp;
  678. }
  679. /* ============================================================ */
  680. /* Test for the second and third tolerance stopping criteria. */
  681. /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */
  682. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  683. /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */
  684. /* non-negative. */
  685. /* We need to check the condition only if the */
  686. /* column index (same as row index) of the original whole */
  687. /* matrix is larger than 1, since the condition for whole */
  688. /* original matrix is checked in the main routine. */
  689. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  690. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  691. *done = TRUE_;
  692. /* Set KB, the number of factorized partial columns */
  693. /* that are non-zero in each step in the block, */
  694. /* i.e. the rank of the factor R. */
  695. /* Set IF, the number of processed rows in the block, which */
  696. /* is the same as the number of processed rows in */
  697. /* the original whole matrix A_orig; */
  698. *kb = k - 1;
  699. if__ = i__ - 1;
  700. /* Apply the block reflector to the residual of the */
  701. /* matrix A and the residual of the right hand sides B, if */
  702. /* the residual matrix and and/or the residual of the right */
  703. /* hand sides exist, i.e. if the submatrix */
  704. /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */
  705. /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  706. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  707. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  708. if (*kb < minmnupdt) {
  709. i__1 = *m - if__;
  710. i__2 = *n + *nrhs - *kb;
  711. sgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &
  712. c_b7, &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 +
  713. f_dim1], ldf, &c_b8, &a[if__ + 1 + (*kb + 1) *
  714. a_dim1], lda);
  715. }
  716. /* There is no need to recompute the 2-norm of the */
  717. /* difficult columns, since we stop the factorization. */
  718. /* Set TAUs corresponding to the columns that were not */
  719. /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = ZERO, */
  720. /* which is equivalent to seting TAU(K:MINMNFACT) = ZERO. */
  721. i__1 = minmnfact;
  722. for (j = k; j <= i__1; ++j) {
  723. tau[j] = 0.f;
  724. }
  725. /* Return from the routine. */
  726. return 0;
  727. }
  728. /* ============================================================ */
  729. /* End ELSE of IF(I.EQ.1) */
  730. }
  731. /* =============================================================== */
  732. /* If the pivot column is not the first column of the */
  733. /* subblock A(1:M,K:N): */
  734. /* 1) swap the K-th column and the KP-th pivot column */
  735. /* in A(1:M,1:N); */
  736. /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */
  737. /* 3) copy the K-th element into the KP-th element of the partial */
  738. /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */
  739. /* for VN1 and VN2 since we use the element with the index */
  740. /* larger than K in the next loop step.) */
  741. /* 4) Save the pivot interchange with the indices relative to the */
  742. /* the original matrix A_orig, not the block A(1:M,1:N). */
  743. if (kp != k) {
  744. sswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
  745. i__1 = k - 1;
  746. sswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf);
  747. vn1[kp] = vn1[k];
  748. vn2[kp] = vn2[k];
  749. itemp = jpiv[kp];
  750. jpiv[kp] = jpiv[k];
  751. jpiv[k] = itemp;
  752. }
  753. /* Apply previous Householder reflectors to column K: */
  754. /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**T. */
  755. if (k > 1) {
  756. i__1 = *m - i__ + 1;
  757. i__2 = k - 1;
  758. sgemv_("No transpose", &i__1, &i__2, &c_b7, &a[i__ + a_dim1], lda,
  759. &f[k + f_dim1], ldf, &c_b8, &a[i__ + k * a_dim1], &c__1);
  760. }
  761. /* Generate elementary reflector H(k) using the column A(I:M,K). */
  762. if (i__ < *m) {
  763. i__1 = *m - i__ + 1;
  764. slarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], &
  765. c__1, &tau[k]);
  766. } else {
  767. tau[k] = 0.f;
  768. }
  769. /* Check if TAU(K) contains NaN, set INFO parameter */
  770. /* to the column number where NaN is found and return from */
  771. /* the routine. */
  772. /* NOTE: There is no need to check TAU(K) for Inf, */
  773. /* since SLARFG cannot produce TAU(K) or Householder vector */
  774. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  775. /* returned by SLARFG can contain Inf, which requires */
  776. /* TAU(K) to contain NaN. Therefore, this case of generating Inf */
  777. /* by SLARFG is covered by checking TAU(K) for NaN. */
  778. if (sisnan_(&tau[k])) {
  779. *done = TRUE_;
  780. /* Set KB, the number of factorized partial columns */
  781. /* that are non-zero in each step in the block, */
  782. /* i.e. the rank of the factor R. */
  783. /* Set IF, the number of processed rows in the block, which */
  784. /* is the same as the number of processed rows in */
  785. /* the original whole matrix A_orig. */
  786. *kb = k - 1;
  787. if__ = i__ - 1;
  788. *info = k;
  789. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  790. *maxc2nrmk = tau[k];
  791. *relmaxc2nrmk = tau[k];
  792. /* There is no need to apply the block reflector to the */
  793. /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */
  794. /* since the submatrix contains NaN and we stop */
  795. /* the computation. */
  796. /* But, we need to apply the block reflector to the residual */
  797. /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */
  798. /* residual right hand sides exist. This occurs */
  799. /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */
  800. /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */
  801. /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**T. */
  802. if (*nrhs > 0 && *kb < *m - *ioffset) {
  803. i__1 = *m - if__;
  804. sgemm_("No transpose", "Transpose", &i__1, nrhs, kb, &c_b7, &
  805. a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &
  806. c_b8, &a[if__ + 1 + (*n + 1) * a_dim1], lda);
  807. }
  808. /* There is no need to recompute the 2-norm of the */
  809. /* difficult columns, since we stop the factorization. */
  810. /* Array TAU(KF+1:MINMNFACT) is not set and contains */
  811. /* undefined elements. */
  812. /* Return from the routine. */
  813. return 0;
  814. }
  815. /* =============================================================== */
  816. aik = a[i__ + k * a_dim1];
  817. a[i__ + k * a_dim1] = 1.f;
  818. /* =============================================================== */
  819. /* Compute the current K-th column of F: */
  820. /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**T * A(I:M,K). */
  821. if (k < *n + *nrhs) {
  822. i__1 = *m - i__ + 1;
  823. i__2 = *n + *nrhs - k;
  824. sgemv_("Transpose", &i__1, &i__2, &tau[k], &a[i__ + (k + 1) *
  825. a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b30, &f[k +
  826. 1 + k * f_dim1], &c__1);
  827. }
  828. /* 2) Zero out elements above and on the diagonal of the */
  829. /* column K in matrix F, i.e elements F(1:K,K). */
  830. i__1 = k;
  831. for (j = 1; j <= i__1; ++j) {
  832. f[j + k * f_dim1] = 0.f;
  833. }
  834. /* 3) Incremental updating of the K-th column of F: */
  835. /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**T */
  836. /* * A(I:M,K). */
  837. if (k > 1) {
  838. i__1 = *m - i__ + 1;
  839. i__2 = k - 1;
  840. r__1 = -tau[k];
  841. sgemv_("Transpose", &i__1, &i__2, &r__1, &a[i__ + a_dim1], lda, &
  842. a[i__ + k * a_dim1], &c__1, &c_b30, &auxv[1], &c__1);
  843. i__1 = *n + *nrhs;
  844. i__2 = k - 1;
  845. sgemv_("No transpose", &i__1, &i__2, &c_b8, &f[f_dim1 + 1], ldf, &
  846. auxv[1], &c__1, &c_b8, &f[k * f_dim1 + 1], &c__1);
  847. }
  848. /* =============================================================== */
  849. /* Update the current I-th row of A: */
  850. /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */
  851. /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**T. */
  852. if (k < *n + *nrhs) {
  853. i__1 = *n + *nrhs - k;
  854. sgemv_("No transpose", &i__1, &k, &c_b7, &f[k + 1 + f_dim1], ldf,
  855. &a[i__ + a_dim1], lda, &c_b8, &a[i__ + (k + 1) * a_dim1],
  856. lda);
  857. }
  858. a[i__ + k * a_dim1] = aik;
  859. /* Update the partial column 2-norms for the residual matrix, */
  860. /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */
  861. /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */
  862. if (k < minmnfact) {
  863. i__1 = *n;
  864. for (j = k + 1; j <= i__1; ++j) {
  865. if (vn1[j] != 0.f) {
  866. /* NOTE: The following lines follow from the analysis in */
  867. /* Lapack Working Note 176. */
  868. temp = (r__1 = a[i__ + j * a_dim1], abs(r__1)) / vn1[j];
  869. /* Computing MAX */
  870. r__1 = 0.f, r__2 = (temp + 1.f) * (1.f - temp);
  871. temp = f2cmax(r__1,r__2);
  872. /* Computing 2nd power */
  873. r__1 = vn1[j] / vn2[j];
  874. temp2 = temp * (r__1 * r__1);
  875. if (temp2 <= tol3z) {
  876. /* At J-index, we have a difficult column for the */
  877. /* update of the 2-norm. Save the index of the previous */
  878. /* difficult column in IWORK(J-1). */
  879. /* NOTE: ILSTCC > 1, threfore we can use IWORK only */
  880. /* with N-1 elements, where the elements are */
  881. /* shifted by 1 to the left. */
  882. iwork[j - 1] = lsticc;
  883. /* Set the index of the last difficult column LSTICC. */
  884. lsticc = j;
  885. } else {
  886. vn1[j] *= sqrt(temp);
  887. }
  888. }
  889. }
  890. }
  891. /* End of while loop. */
  892. }
  893. /* Now, afler the loop: */
  894. /* Set KB, the number of factorized columns in the block; */
  895. /* Set IF, the number of processed rows in the block, which */
  896. /* is the same as the number of processed rows in */
  897. /* the original whole matrix A_orig, IF = IOFFSET + KB. */
  898. *kb = k;
  899. if__ = i__;
  900. /* Apply the block reflector to the residual of the matrix A */
  901. /* and the residual of the right hand sides B, if the residual */
  902. /* matrix and and/or the residual of the right hand sides */
  903. /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */
  904. /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */
  905. /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */
  906. /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**T. */
  907. if (*kb < minmnupdt) {
  908. i__1 = *m - if__;
  909. i__2 = *n + *nrhs - *kb;
  910. sgemm_("No transpose", "Transpose", &i__1, &i__2, kb, &c_b7, &a[if__
  911. + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b8, &a[if__
  912. + 1 + (*kb + 1) * a_dim1], lda);
  913. }
  914. /* Recompute the 2-norm of the difficult columns. */
  915. /* Loop over the index of the difficult columns from the largest */
  916. /* to the smallest index. */
  917. while(lsticc > 0) {
  918. /* LSTICC is the index of the last difficult column is greater */
  919. /* than 1. */
  920. /* ITEMP is the index of the previous difficult column. */
  921. itemp = iwork[lsticc - 1];
  922. /* Compute the 2-norm explicilty for the last difficult column and */
  923. /* save it in the partial and exact 2-norm vectors VN1 and VN2. */
  924. /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */
  925. /* SNRM2 does not fail on vectors with norm below the value of */
  926. /* SQRT(SLAMCH('S')) */
  927. i__1 = *m - if__;
  928. vn1[lsticc] = snrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1);
  929. vn2[lsticc] = vn1[lsticc];
  930. /* Downdate the index of the last difficult column to */
  931. /* the index of the previous difficult column. */
  932. lsticc = itemp;
  933. }
  934. return 0;
  935. /* End of SLAQP3RK */
  936. } /* slaqp3rk_ */