You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slaqp2rk.c 27 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef blasint logical;
  52. typedef char logical1;
  53. typedef char integer1;
  54. #define TRUE_ (1)
  55. #define FALSE_ (0)
  56. /* Extern is for use with -E */
  57. #ifndef Extern
  58. #define Extern extern
  59. #endif
  60. /* I/O stuff */
  61. typedef int flag;
  62. typedef int ftnlen;
  63. typedef int ftnint;
  64. /*external read, write*/
  65. typedef struct
  66. { flag cierr;
  67. ftnint ciunit;
  68. flag ciend;
  69. char *cifmt;
  70. ftnint cirec;
  71. } cilist;
  72. /*internal read, write*/
  73. typedef struct
  74. { flag icierr;
  75. char *iciunit;
  76. flag iciend;
  77. char *icifmt;
  78. ftnint icirlen;
  79. ftnint icirnum;
  80. } icilist;
  81. /*open*/
  82. typedef struct
  83. { flag oerr;
  84. ftnint ounit;
  85. char *ofnm;
  86. ftnlen ofnmlen;
  87. char *osta;
  88. char *oacc;
  89. char *ofm;
  90. ftnint orl;
  91. char *oblnk;
  92. } olist;
  93. /*close*/
  94. typedef struct
  95. { flag cerr;
  96. ftnint cunit;
  97. char *csta;
  98. } cllist;
  99. /*rewind, backspace, endfile*/
  100. typedef struct
  101. { flag aerr;
  102. ftnint aunit;
  103. } alist;
  104. /* inquire */
  105. typedef struct
  106. { flag inerr;
  107. ftnint inunit;
  108. char *infile;
  109. ftnlen infilen;
  110. ftnint *inex; /*parameters in standard's order*/
  111. ftnint *inopen;
  112. ftnint *innum;
  113. ftnint *innamed;
  114. char *inname;
  115. ftnlen innamlen;
  116. char *inacc;
  117. ftnlen inacclen;
  118. char *inseq;
  119. ftnlen inseqlen;
  120. char *indir;
  121. ftnlen indirlen;
  122. char *infmt;
  123. ftnlen infmtlen;
  124. char *inform;
  125. ftnint informlen;
  126. char *inunf;
  127. ftnlen inunflen;
  128. ftnint *inrecl;
  129. ftnint *innrec;
  130. char *inblank;
  131. ftnlen inblanklen;
  132. } inlist;
  133. #define VOID void
  134. union Multitype { /* for multiple entry points */
  135. integer1 g;
  136. shortint h;
  137. integer i;
  138. /* longint j; */
  139. real r;
  140. doublereal d;
  141. complex c;
  142. doublecomplex z;
  143. };
  144. typedef union Multitype Multitype;
  145. struct Vardesc { /* for Namelist */
  146. char *name;
  147. char *addr;
  148. ftnlen *dims;
  149. int type;
  150. };
  151. typedef struct Vardesc Vardesc;
  152. struct Namelist {
  153. char *name;
  154. Vardesc **vars;
  155. int nvars;
  156. };
  157. typedef struct Namelist Namelist;
  158. #define abs(x) ((x) >= 0 ? (x) : -(x))
  159. #define dabs(x) (fabs(x))
  160. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  161. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  162. #define dmin(a,b) (f2cmin(a,b))
  163. #define dmax(a,b) (f2cmax(a,b))
  164. #define bit_test(a,b) ((a) >> (b) & 1)
  165. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  166. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  167. #define abort_() { sig_die("Fortran abort routine called", 1); }
  168. #define c_abs(z) (cabsf(Cf(z)))
  169. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  170. #ifdef _MSC_VER
  171. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  172. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  173. #else
  174. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  175. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  176. #endif
  177. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  178. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  179. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  180. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  181. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  182. #define d_abs(x) (fabs(*(x)))
  183. #define d_acos(x) (acos(*(x)))
  184. #define d_asin(x) (asin(*(x)))
  185. #define d_atan(x) (atan(*(x)))
  186. #define d_atn2(x, y) (atan2(*(x),*(y)))
  187. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  188. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  189. #define d_cos(x) (cos(*(x)))
  190. #define d_cosh(x) (cosh(*(x)))
  191. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  192. #define d_exp(x) (exp(*(x)))
  193. #define d_imag(z) (cimag(Cd(z)))
  194. #define r_imag(z) (cimagf(Cf(z)))
  195. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  196. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  198. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define d_log(x) (log(*(x)))
  200. #define d_mod(x, y) (fmod(*(x), *(y)))
  201. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  202. #define d_nint(x) u_nint(*(x))
  203. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  204. #define d_sign(a,b) u_sign(*(a),*(b))
  205. #define r_sign(a,b) u_sign(*(a),*(b))
  206. #define d_sin(x) (sin(*(x)))
  207. #define d_sinh(x) (sinh(*(x)))
  208. #define d_sqrt(x) (sqrt(*(x)))
  209. #define d_tan(x) (tan(*(x)))
  210. #define d_tanh(x) (tanh(*(x)))
  211. #define i_abs(x) abs(*(x))
  212. #define i_dnnt(x) ((integer)u_nint(*(x)))
  213. #define i_len(s, n) (n)
  214. #define i_nint(x) ((integer)u_nint(*(x)))
  215. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  216. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  217. #define pow_si(B,E) spow_ui(*(B),*(E))
  218. #define pow_ri(B,E) spow_ui(*(B),*(E))
  219. #define pow_di(B,E) dpow_ui(*(B),*(E))
  220. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  221. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  222. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  223. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  224. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  225. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  226. #define sig_die(s, kill) { exit(1); }
  227. #define s_stop(s, n) {exit(0);}
  228. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  229. #define z_abs(z) (cabs(Cd(z)))
  230. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  231. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  232. #define myexit_() break;
  233. #define mycycle_() continue;
  234. #define myceiling_(w) {ceil(w)}
  235. #define myhuge_(w) {HUGE_VAL}
  236. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  237. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  238. /* procedure parameter types for -A and -C++ */
  239. #ifdef __cplusplus
  240. typedef logical (*L_fp)(...);
  241. #else
  242. typedef logical (*L_fp)();
  243. #endif
  244. static float spow_ui(float x, integer n) {
  245. float pow=1.0; unsigned long int u;
  246. if(n != 0) {
  247. if(n < 0) n = -n, x = 1/x;
  248. for(u = n; ; ) {
  249. if(u & 01) pow *= x;
  250. if(u >>= 1) x *= x;
  251. else break;
  252. }
  253. }
  254. return pow;
  255. }
  256. static double dpow_ui(double x, integer n) {
  257. double pow=1.0; unsigned long int u;
  258. if(n != 0) {
  259. if(n < 0) n = -n, x = 1/x;
  260. for(u = n; ; ) {
  261. if(u & 01) pow *= x;
  262. if(u >>= 1) x *= x;
  263. else break;
  264. }
  265. }
  266. return pow;
  267. }
  268. #ifdef _MSC_VER
  269. static _Fcomplex cpow_ui(complex x, integer n) {
  270. complex pow={1.0,0.0}; unsigned long int u;
  271. if(n != 0) {
  272. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  273. for(u = n; ; ) {
  274. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  275. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  276. else break;
  277. }
  278. }
  279. _Fcomplex p={pow.r, pow.i};
  280. return p;
  281. }
  282. #else
  283. static _Complex float cpow_ui(_Complex float x, integer n) {
  284. _Complex float pow=1.0; unsigned long int u;
  285. if(n != 0) {
  286. if(n < 0) n = -n, x = 1/x;
  287. for(u = n; ; ) {
  288. if(u & 01) pow *= x;
  289. if(u >>= 1) x *= x;
  290. else break;
  291. }
  292. }
  293. return pow;
  294. }
  295. #endif
  296. #ifdef _MSC_VER
  297. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  298. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  299. if(n != 0) {
  300. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  301. for(u = n; ; ) {
  302. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  303. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  304. else break;
  305. }
  306. }
  307. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  308. return p;
  309. }
  310. #else
  311. static _Complex double zpow_ui(_Complex double x, integer n) {
  312. _Complex double pow=1.0; unsigned long int u;
  313. if(n != 0) {
  314. if(n < 0) n = -n, x = 1/x;
  315. for(u = n; ; ) {
  316. if(u & 01) pow *= x;
  317. if(u >>= 1) x *= x;
  318. else break;
  319. }
  320. }
  321. return pow;
  322. }
  323. #endif
  324. static integer pow_ii(integer x, integer n) {
  325. integer pow; unsigned long int u;
  326. if (n <= 0) {
  327. if (n == 0 || x == 1) pow = 1;
  328. else if (x != -1) pow = x == 0 ? 1/x : 0;
  329. else n = -n;
  330. }
  331. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  332. u = n;
  333. for(pow = 1; ; ) {
  334. if(u & 01) pow *= x;
  335. if(u >>= 1) x *= x;
  336. else break;
  337. }
  338. }
  339. return pow;
  340. }
  341. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  342. {
  343. double m; integer i, mi;
  344. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  345. if (w[i-1]>m) mi=i ,m=w[i-1];
  346. return mi-s+1;
  347. }
  348. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  349. {
  350. float m; integer i, mi;
  351. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  352. if (w[i-1]>m) mi=i ,m=w[i-1];
  353. return mi-s+1;
  354. }
  355. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  356. integer n = *n_, incx = *incx_, incy = *incy_, i;
  357. #ifdef _MSC_VER
  358. _Fcomplex zdotc = {0.0, 0.0};
  359. if (incx == 1 && incy == 1) {
  360. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  361. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  362. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  363. }
  364. } else {
  365. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  366. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  367. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  368. }
  369. }
  370. pCf(z) = zdotc;
  371. }
  372. #else
  373. _Complex float zdotc = 0.0;
  374. if (incx == 1 && incy == 1) {
  375. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  376. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  377. }
  378. } else {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  381. }
  382. }
  383. pCf(z) = zdotc;
  384. }
  385. #endif
  386. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  387. integer n = *n_, incx = *incx_, incy = *incy_, i;
  388. #ifdef _MSC_VER
  389. _Dcomplex zdotc = {0.0, 0.0};
  390. if (incx == 1 && incy == 1) {
  391. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  392. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  393. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  394. }
  395. } else {
  396. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  397. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  398. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  399. }
  400. }
  401. pCd(z) = zdotc;
  402. }
  403. #else
  404. _Complex double zdotc = 0.0;
  405. if (incx == 1 && incy == 1) {
  406. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  407. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  408. }
  409. } else {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  412. }
  413. }
  414. pCd(z) = zdotc;
  415. }
  416. #endif
  417. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  418. integer n = *n_, incx = *incx_, incy = *incy_, i;
  419. #ifdef _MSC_VER
  420. _Fcomplex zdotc = {0.0, 0.0};
  421. if (incx == 1 && incy == 1) {
  422. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  423. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  424. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  425. }
  426. } else {
  427. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  428. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  429. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  430. }
  431. }
  432. pCf(z) = zdotc;
  433. }
  434. #else
  435. _Complex float zdotc = 0.0;
  436. if (incx == 1 && incy == 1) {
  437. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  438. zdotc += Cf(&x[i]) * Cf(&y[i]);
  439. }
  440. } else {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  443. }
  444. }
  445. pCf(z) = zdotc;
  446. }
  447. #endif
  448. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  449. integer n = *n_, incx = *incx_, incy = *incy_, i;
  450. #ifdef _MSC_VER
  451. _Dcomplex zdotc = {0.0, 0.0};
  452. if (incx == 1 && incy == 1) {
  453. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  454. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  455. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  456. }
  457. } else {
  458. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  459. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  460. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  461. }
  462. }
  463. pCd(z) = zdotc;
  464. }
  465. #else
  466. _Complex double zdotc = 0.0;
  467. if (incx == 1 && incy == 1) {
  468. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  469. zdotc += Cd(&x[i]) * Cd(&y[i]);
  470. }
  471. } else {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  474. }
  475. }
  476. pCd(z) = zdotc;
  477. }
  478. #endif
  479. /* -- translated by f2c (version 20000121).
  480. You must link the resulting object file with the libraries:
  481. -lf2c -lm (in that order)
  482. */
  483. /* -- translated by f2c (version 20000121).
  484. You must link the resulting object file with the libraries:
  485. -lf2c -lm (in that order)
  486. */
  487. /* Table of constant values */
  488. static integer c__1 = 1;
  489. /* Subroutine */ int slaqp2rk_(integer *m, integer *n, integer *nrhs, integer
  490. *ioffset, integer *kmax, real *abstol, real *reltol, integer *kp1,
  491. real *maxc2nrm, real *a, integer *lda, integer *k, real *maxc2nrmk,
  492. real *relmaxc2nrmk, integer *jpiv, real *tau, real *vn1, real *vn2,
  493. real *work, integer *info)
  494. {
  495. /* System generated locals */
  496. integer a_dim1, a_offset, i__1, i__2, i__3;
  497. real r__1, r__2;
  498. /* Local variables */
  499. real aikk, temp, temp2;
  500. extern real snrm2_(integer *, real *, integer *);
  501. integer i__, j;
  502. real tol3z;
  503. integer jmaxc2nrm;
  504. extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
  505. integer *, real *, real *, integer *, real *);
  506. integer itemp, minmnfact;
  507. extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
  508. integer *);
  509. real myhugeval;
  510. integer minmnupdt, kk, kp;
  511. extern real slamch_(char *);
  512. extern /* Subroutine */ int slarfg_(integer *, real *, real *, integer *,
  513. real *);
  514. extern integer isamax_(integer *, real *, integer *);
  515. extern logical sisnan_(real *);
  516. /* -- LAPACK auxiliary routine -- */
  517. /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
  518. /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
  519. /* ===================================================================== */
  520. /* Initialize INFO */
  521. /* Parameter adjustments */
  522. a_dim1 = *lda;
  523. a_offset = 1 + a_dim1 * 1;
  524. a -= a_offset;
  525. --jpiv;
  526. --tau;
  527. --vn1;
  528. --vn2;
  529. --work;
  530. /* Function Body */
  531. *info = 0;
  532. /* MINMNFACT in the smallest dimension of the submatrix */
  533. /* A(IOFFSET+1:M,1:N) to be factorized. */
  534. /* MINMNUPDT is the smallest dimension */
  535. /* of the subarray A(IOFFSET+1:M,1:N+NRHS) to be udated, which */
  536. /* contains the submatrices A(IOFFSET+1:M,1:N) and */
  537. /* B(IOFFSET+1:M,1:NRHS) as column blocks. */
  538. /* Computing MIN */
  539. i__1 = *m - *ioffset;
  540. minmnfact = f2cmin(i__1,*n);
  541. /* Computing MIN */
  542. i__1 = *m - *ioffset, i__2 = *n + *nrhs;
  543. minmnupdt = f2cmin(i__1,i__2);
  544. *kmax = f2cmin(*kmax,minmnfact);
  545. tol3z = sqrt(slamch_("Epsilon"));
  546. myhugeval = slamch_("Overflow");
  547. /* Compute the factorization, KK is the lomn loop index. */
  548. i__1 = *kmax;
  549. for (kk = 1; kk <= i__1; ++kk) {
  550. i__ = *ioffset + kk;
  551. if (i__ == 1) {
  552. /* ============================================================ */
  553. /* We are at the first column of the original whole matrix A, */
  554. /* therefore we use the computed KP1 and MAXC2NRM from the */
  555. /* main routine. */
  556. kp = *kp1;
  557. /* ============================================================ */
  558. } else {
  559. /* ============================================================ */
  560. /* Determine the pivot column in KK-th step, i.e. the index */
  561. /* of the column with the maximum 2-norm in the */
  562. /* submatrix A(I:M,K:N). */
  563. i__2 = *n - kk + 1;
  564. kp = kk - 1 + isamax_(&i__2, &vn1[kk], &c__1);
  565. /* Determine the maximum column 2-norm and the relative maximum */
  566. /* column 2-norm of the submatrix A(I:M,KK:N) in step KK. */
  567. /* RELMAXC2NRMK will be computed later, after somecondition */
  568. /* checks on MAXC2NRMK. */
  569. *maxc2nrmk = vn1[kp];
  570. /* ============================================================ */
  571. /* Check if the submatrix A(I:M,KK:N) contains NaN, and set */
  572. /* INFO parameter to the column number, where the first NaN */
  573. /* is found and return from the routine. */
  574. /* We need to check the condition only if the */
  575. /* column index (same as row index) of the original whole */
  576. /* matrix is larger than 1, since the condition for whole */
  577. /* original matrix is checked in the main routine. */
  578. if (sisnan_(maxc2nrmk)) {
  579. /* Set K, the number of factorized columns. */
  580. /* that are not zero. */
  581. *k = kk - 1;
  582. *info = *k + kp;
  583. /* Set RELMAXC2NRMK to NaN. */
  584. *relmaxc2nrmk = *maxc2nrmk;
  585. /* Array TAU(K+1:MINMNFACT) is not set and contains */
  586. /* undefined elements. */
  587. return 0;
  588. }
  589. /* ============================================================ */
  590. /* Quick return, if the submatrix A(I:M,KK:N) is */
  591. /* a zero matrix. */
  592. /* We need to check the condition only if the */
  593. /* column index (same as row index) of the original whole */
  594. /* matrix is larger than 1, since the condition for whole */
  595. /* original matrix is checked in the main routine. */
  596. if (*maxc2nrmk == 0.f) {
  597. /* Set K, the number of factorized columns. */
  598. /* that are not zero. */
  599. *k = kk - 1;
  600. *relmaxc2nrmk = 0.f;
  601. /* Set TAUs corresponding to the columns that were not */
  602. /* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO. */
  603. i__2 = minmnfact;
  604. for (j = kk; j <= i__2; ++j) {
  605. tau[j] = 0.f;
  606. }
  607. /* Return from the routine. */
  608. return 0;
  609. }
  610. /* ============================================================ */
  611. /* Check if the submatrix A(I:M,KK:N) contains Inf, */
  612. /* set INFO parameter to the column number, where */
  613. /* the first Inf is found plus N, and continue */
  614. /* the computation. */
  615. /* We need to check the condition only if the */
  616. /* column index (same as row index) of the original whole */
  617. /* matrix is larger than 1, since the condition for whole */
  618. /* original matrix is checked in the main routine. */
  619. if (*info == 0 && *maxc2nrmk > myhugeval) {
  620. *info = *n + kk - 1 + kp;
  621. }
  622. /* ============================================================ */
  623. /* Test for the second and third stopping criteria. */
  624. /* NOTE: There is no need to test for ABSTOL >= ZERO, since */
  625. /* MAXC2NRMK is non-negative. Similarly, there is no need */
  626. /* to test for RELTOL >= ZERO, since RELMAXC2NRMK is */
  627. /* non-negative. */
  628. /* We need to check the condition only if the */
  629. /* column index (same as row index) of the original whole */
  630. /* matrix is larger than 1, since the condition for whole */
  631. /* original matrix is checked in the main routine. */
  632. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  633. if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) {
  634. /* Set K, the number of factorized columns. */
  635. *k = kk - 1;
  636. /* Set TAUs corresponding to the columns that were not */
  637. /* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to ZERO. */
  638. i__2 = minmnfact;
  639. for (j = kk; j <= i__2; ++j) {
  640. tau[j] = 0.f;
  641. }
  642. /* Return from the routine. */
  643. return 0;
  644. }
  645. /* ============================================================ */
  646. /* End ELSE of IF(I.EQ.1) */
  647. }
  648. /* =============================================================== */
  649. /* If the pivot column is not the first column of the */
  650. /* subblock A(1:M,KK:N): */
  651. /* 1) swap the KK-th column and the KP-th pivot column */
  652. /* in A(1:M,1:N); */
  653. /* 2) copy the KK-th element into the KP-th element of the partial */
  654. /* and exact 2-norm vectors VN1 and VN2. ( Swap is not needed */
  655. /* for VN1 and VN2 since we use the element with the index */
  656. /* larger than KK in the next loop step.) */
  657. /* 3) Save the pivot interchange with the indices relative to the */
  658. /* the original matrix A, not the block A(1:M,1:N). */
  659. if (kp != kk) {
  660. sswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[kk * a_dim1 + 1], &c__1);
  661. vn1[kp] = vn1[kk];
  662. vn2[kp] = vn2[kk];
  663. itemp = jpiv[kp];
  664. jpiv[kp] = jpiv[kk];
  665. jpiv[kk] = itemp;
  666. }
  667. /* Generate elementary reflector H(KK) using the column A(I:M,KK), */
  668. /* if the column has more than one element, otherwise */
  669. /* the elementary reflector would be an identity matrix, */
  670. /* and TAU(KK) = ZERO. */
  671. if (i__ < *m) {
  672. i__2 = *m - i__ + 1;
  673. slarfg_(&i__2, &a[i__ + kk * a_dim1], &a[i__ + 1 + kk * a_dim1], &
  674. c__1, &tau[kk]);
  675. } else {
  676. tau[kk] = 0.f;
  677. }
  678. /* Check if TAU(KK) contains NaN, set INFO parameter */
  679. /* to the column number where NaN is found and return from */
  680. /* the routine. */
  681. /* NOTE: There is no need to check TAU(KK) for Inf, */
  682. /* since SLARFG cannot produce TAU(KK) or Householder vector */
  683. /* below the diagonal containing Inf. Only BETA on the diagonal, */
  684. /* returned by SLARFG can contain Inf, which requires */
  685. /* TAU(KK) to contain NaN. Therefore, this case of generating Inf */
  686. /* by SLARFG is covered by checking TAU(KK) for NaN. */
  687. if (sisnan_(&tau[kk])) {
  688. *k = kk - 1;
  689. *info = kk;
  690. /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */
  691. *maxc2nrmk = tau[kk];
  692. *relmaxc2nrmk = tau[kk];
  693. /* Array TAU(KK:MINMNFACT) is not set and contains */
  694. /* undefined elements, except the first element TAU(KK) = NaN. */
  695. return 0;
  696. }
  697. /* Apply H(KK)**T to A(I:M,KK+1:N+NRHS) from the left. */
  698. /* ( If M >= N, then at KK = N there is no residual matrix, */
  699. /* i.e. no columns of A to update, only columns of B. */
  700. /* If M < N, then at KK = M-IOFFSET, I = M and we have a */
  701. /* one-row residual matrix in A and the elementary */
  702. /* reflector is a unit matrix, TAU(KK) = ZERO, i.e. no update */
  703. /* is needed for the residual matrix in A and the */
  704. /* right-hand-side-matrix in B. */
  705. /* Therefore, we update only if */
  706. /* KK < MINMNUPDT = f2cmin(M-IOFFSET, N+NRHS) */
  707. /* condition is satisfied, not only KK < N+NRHS ) */
  708. if (kk < minmnupdt) {
  709. aikk = a[i__ + kk * a_dim1];
  710. a[i__ + kk * a_dim1] = 1.f;
  711. i__2 = *m - i__ + 1;
  712. i__3 = *n + *nrhs - kk;
  713. slarf_("Left", &i__2, &i__3, &a[i__ + kk * a_dim1], &c__1, &tau[
  714. kk], &a[i__ + (kk + 1) * a_dim1], lda, &work[1]);
  715. a[i__ + kk * a_dim1] = aikk;
  716. }
  717. if (kk < minmnfact) {
  718. /* Update the partial column 2-norms for the residual matrix, */
  719. /* only if the residual matrix A(I+1:M,KK+1:N) exists, i.e. */
  720. /* when KK < f2cmin(M-IOFFSET, N). */
  721. i__2 = *n;
  722. for (j = kk + 1; j <= i__2; ++j) {
  723. if (vn1[j] != 0.f) {
  724. /* NOTE: The following lines follow from the analysis in */
  725. /* Lapack Working Note 176. */
  726. /* Computing 2nd power */
  727. r__2 = (r__1 = a[i__ + j * a_dim1], abs(r__1)) / vn1[j];
  728. temp = 1.f - r__2 * r__2;
  729. temp = f2cmax(temp,0.f);
  730. /* Computing 2nd power */
  731. r__1 = vn1[j] / vn2[j];
  732. temp2 = temp * (r__1 * r__1);
  733. if (temp2 <= tol3z) {
  734. /* Compute the column 2-norm for the partial */
  735. /* column A(I+1:M,J) by explicitly computing it, */
  736. /* and store it in both partial 2-norm vector VN1 */
  737. /* and exact column 2-norm vector VN2. */
  738. i__3 = *m - i__;
  739. vn1[j] = snrm2_(&i__3, &a[i__ + 1 + j * a_dim1], &
  740. c__1);
  741. vn2[j] = vn1[j];
  742. } else {
  743. /* Update the column 2-norm for the partial */
  744. /* column A(I+1:M,J) by removing one */
  745. /* element A(I,J) and store it in partial */
  746. /* 2-norm vector VN1. */
  747. vn1[j] *= sqrt(temp);
  748. }
  749. }
  750. }
  751. }
  752. /* End factorization loop */
  753. }
  754. /* If we reached this point, all colunms have been factorized, */
  755. /* i.e. no condition was triggered to exit the routine. */
  756. /* Set the number of factorized columns. */
  757. *k = *kmax;
  758. /* We reached the end of the loop, i.e. all KMAX columns were */
  759. /* factorized, we need to set MAXC2NRMK and RELMAXC2NRMK before */
  760. /* we return. */
  761. if (*k < minmnfact) {
  762. i__1 = *n - *k;
  763. jmaxc2nrm = *k + isamax_(&i__1, &vn1[*k + 1], &c__1);
  764. *maxc2nrmk = vn1[jmaxc2nrm];
  765. if (*k == 0) {
  766. *relmaxc2nrmk = 1.f;
  767. } else {
  768. *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm;
  769. }
  770. } else {
  771. *maxc2nrmk = 0.f;
  772. *relmaxc2nrmk = 0.f;
  773. }
  774. /* We reached the end of the loop, i.e. all KMAX columns were */
  775. /* factorized, set TAUs corresponding to the columns that were */
  776. /* not factorized to ZERO, i.e. TAU(K+1:MINMNFACT) set to ZERO. */
  777. i__1 = minmnfact;
  778. for (j = *k + 1; j <= i__1; ++j) {
  779. tau[j] = 0.f;
  780. }
  781. return 0;
  782. /* End of SLAQP2RK */
  783. } /* slaqp2rk_ */