You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sla_gerfsx_extended.f 25 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. *> \brief \b SLA_GERFSX_EXTENDED improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLA_GERFSX_EXTENDED + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gerfsx_extended.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gerfsx_extended.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gerfsx_extended.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  22. * LDA, AF, LDAF, IPIV, COLEQU, C, B,
  23. * LDB, Y, LDY, BERR_OUT, N_NORMS,
  24. * ERRS_N, ERRS_C, RES,
  25. * AYB, DY, Y_TAIL, RCOND, ITHRESH,
  26. * RTHRESH, DZ_UB, IGNORE_CWISE,
  27. * INFO )
  28. *
  29. * .. Scalar Arguments ..
  30. * INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  31. * $ TRANS_TYPE, N_NORMS, ITHRESH
  32. * LOGICAL COLEQU, IGNORE_CWISE
  33. * REAL RTHRESH, DZ_UB
  34. * ..
  35. * .. Array Arguments ..
  36. * INTEGER IPIV( * )
  37. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  38. * $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  39. * REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  40. * $ ERRS_N( NRHS, * ),
  41. * $ ERRS_C( NRHS, * )
  42. * ..
  43. *
  44. *
  45. *> \par Purpose:
  46. * =============
  47. *>
  48. *> \verbatim
  49. *>
  50. *> SLA_GERFSX_EXTENDED improves the computed solution to a system of
  51. *> linear equations by performing extra-precise iterative refinement
  52. *> and provides error bounds and backward error estimates for the solution.
  53. *> This subroutine is called by SGERFSX to perform iterative refinement.
  54. *> In addition to normwise error bound, the code provides maximum
  55. *> componentwise error bound if possible. See comments for ERRS_N
  56. *> and ERRS_C for details of the error bounds. Note that this
  57. *> subroutine is only responsible for setting the second fields of
  58. *> ERRS_N and ERRS_C.
  59. *> \endverbatim
  60. *
  61. * Arguments:
  62. * ==========
  63. *
  64. *> \param[in] PREC_TYPE
  65. *> \verbatim
  66. *> PREC_TYPE is INTEGER
  67. *> Specifies the intermediate precision to be used in refinement.
  68. *> The value is defined by ILAPREC(P) where P is a CHARACTER and P
  69. *> = 'S': Single
  70. *> = 'D': Double
  71. *> = 'I': Indigenous
  72. *> = 'X' or 'E': Extra
  73. *> \endverbatim
  74. *>
  75. *> \param[in] TRANS_TYPE
  76. *> \verbatim
  77. *> TRANS_TYPE is INTEGER
  78. *> Specifies the transposition operation on A.
  79. *> The value is defined by ILATRANS(T) where T is a CHARACTER and T
  80. *> = 'N': No transpose
  81. *> = 'T': Transpose
  82. *> = 'C': Conjugate transpose
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The number of linear equations, i.e., the order of the
  89. *> matrix A. N >= 0.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] NRHS
  93. *> \verbatim
  94. *> NRHS is INTEGER
  95. *> The number of right-hand-sides, i.e., the number of columns of the
  96. *> matrix B.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] A
  100. *> \verbatim
  101. *> A is REAL array, dimension (LDA,N)
  102. *> On entry, the N-by-N matrix A.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> The leading dimension of the array A. LDA >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in] AF
  112. *> \verbatim
  113. *> AF is REAL array, dimension (LDAF,N)
  114. *> The factors L and U from the factorization
  115. *> A = P*L*U as computed by SGETRF.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] LDAF
  119. *> \verbatim
  120. *> LDAF is INTEGER
  121. *> The leading dimension of the array AF. LDAF >= max(1,N).
  122. *> \endverbatim
  123. *>
  124. *> \param[in] IPIV
  125. *> \verbatim
  126. *> IPIV is INTEGER array, dimension (N)
  127. *> The pivot indices from the factorization A = P*L*U
  128. *> as computed by SGETRF; row i of the matrix was interchanged
  129. *> with row IPIV(i).
  130. *> \endverbatim
  131. *>
  132. *> \param[in] COLEQU
  133. *> \verbatim
  134. *> COLEQU is LOGICAL
  135. *> If .TRUE. then column equilibration was done to A before calling
  136. *> this routine. This is needed to compute the solution and error
  137. *> bounds correctly.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] C
  141. *> \verbatim
  142. *> C is REAL array, dimension (N)
  143. *> The column scale factors for A. If COLEQU = .FALSE., C
  144. *> is not accessed. If C is input, each element of C should be a power
  145. *> of the radix to ensure a reliable solution and error estimates.
  146. *> Scaling by powers of the radix does not cause rounding errors unless
  147. *> the result underflows or overflows. Rounding errors during scaling
  148. *> lead to refining with a matrix that is not equivalent to the
  149. *> input matrix, producing error estimates that may not be
  150. *> reliable.
  151. *> \endverbatim
  152. *>
  153. *> \param[in] B
  154. *> \verbatim
  155. *> B is REAL array, dimension (LDB,NRHS)
  156. *> The right-hand-side matrix B.
  157. *> \endverbatim
  158. *>
  159. *> \param[in] LDB
  160. *> \verbatim
  161. *> LDB is INTEGER
  162. *> The leading dimension of the array B. LDB >= max(1,N).
  163. *> \endverbatim
  164. *>
  165. *> \param[in,out] Y
  166. *> \verbatim
  167. *> Y is REAL array, dimension (LDY,NRHS)
  168. *> On entry, the solution matrix X, as computed by SGETRS.
  169. *> On exit, the improved solution matrix Y.
  170. *> \endverbatim
  171. *>
  172. *> \param[in] LDY
  173. *> \verbatim
  174. *> LDY is INTEGER
  175. *> The leading dimension of the array Y. LDY >= max(1,N).
  176. *> \endverbatim
  177. *>
  178. *> \param[out] BERR_OUT
  179. *> \verbatim
  180. *> BERR_OUT is REAL array, dimension (NRHS)
  181. *> On exit, BERR_OUT(j) contains the componentwise relative backward
  182. *> error for right-hand-side j from the formula
  183. *> max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  184. *> where abs(Z) is the componentwise absolute value of the matrix
  185. *> or vector Z. This is computed by SLA_LIN_BERR.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] N_NORMS
  189. *> \verbatim
  190. *> N_NORMS is INTEGER
  191. *> Determines which error bounds to return (see ERRS_N
  192. *> and ERRS_C).
  193. *> If N_NORMS >= 1 return normwise error bounds.
  194. *> If N_NORMS >= 2 return componentwise error bounds.
  195. *> \endverbatim
  196. *>
  197. *> \param[in,out] ERRS_N
  198. *> \verbatim
  199. *> ERRS_N is REAL array, dimension (NRHS, N_ERR_BNDS)
  200. *> For each right-hand side, this array contains information about
  201. *> various error bounds and condition numbers corresponding to the
  202. *> normwise relative error, which is defined as follows:
  203. *>
  204. *> Normwise relative error in the ith solution vector:
  205. *> max_j (abs(XTRUE(j,i) - X(j,i)))
  206. *> ------------------------------
  207. *> max_j abs(X(j,i))
  208. *>
  209. *> The array is indexed by the type of error information as described
  210. *> below. There currently are up to three pieces of information
  211. *> returned.
  212. *>
  213. *> The first index in ERRS_N(i,:) corresponds to the ith
  214. *> right-hand side.
  215. *>
  216. *> The second index in ERRS_N(:,err) contains the following
  217. *> three fields:
  218. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  219. *> reciprocal condition number is less than the threshold
  220. *> sqrt(n) * slamch('Epsilon').
  221. *>
  222. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  223. *> almost certainly within a factor of 10 of the true error
  224. *> so long as the next entry is greater than the threshold
  225. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  226. *> be trusted if the previous boolean is true.
  227. *>
  228. *> err = 3 Reciprocal condition number: Estimated normwise
  229. *> reciprocal condition number. Compared with the threshold
  230. *> sqrt(n) * slamch('Epsilon') to determine if the error
  231. *> estimate is "guaranteed". These reciprocal condition
  232. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  233. *> appropriately scaled matrix Z.
  234. *> Let Z = S*A, where S scales each row by a power of the
  235. *> radix so all absolute row sums of Z are approximately 1.
  236. *>
  237. *> This subroutine is only responsible for setting the second field
  238. *> above.
  239. *> See Lapack Working Note 165 for further details and extra
  240. *> cautions.
  241. *> \endverbatim
  242. *>
  243. *> \param[in,out] ERRS_C
  244. *> \verbatim
  245. *> ERRS_C is REAL array, dimension (NRHS, N_ERR_BNDS)
  246. *> For each right-hand side, this array contains information about
  247. *> various error bounds and condition numbers corresponding to the
  248. *> componentwise relative error, which is defined as follows:
  249. *>
  250. *> Componentwise relative error in the ith solution vector:
  251. *> abs(XTRUE(j,i) - X(j,i))
  252. *> max_j ----------------------
  253. *> abs(X(j,i))
  254. *>
  255. *> The array is indexed by the right-hand side i (on which the
  256. *> componentwise relative error depends), and the type of error
  257. *> information as described below. There currently are up to three
  258. *> pieces of information returned for each right-hand side. If
  259. *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
  260. *> ERRS_C is not accessed. If N_ERR_BNDS < 3, then at most
  261. *> the first (:,N_ERR_BNDS) entries are returned.
  262. *>
  263. *> The first index in ERRS_C(i,:) corresponds to the ith
  264. *> right-hand side.
  265. *>
  266. *> The second index in ERRS_C(:,err) contains the following
  267. *> three fields:
  268. *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
  269. *> reciprocal condition number is less than the threshold
  270. *> sqrt(n) * slamch('Epsilon').
  271. *>
  272. *> err = 2 "Guaranteed" error bound: The estimated forward error,
  273. *> almost certainly within a factor of 10 of the true error
  274. *> so long as the next entry is greater than the threshold
  275. *> sqrt(n) * slamch('Epsilon'). This error bound should only
  276. *> be trusted if the previous boolean is true.
  277. *>
  278. *> err = 3 Reciprocal condition number: Estimated componentwise
  279. *> reciprocal condition number. Compared with the threshold
  280. *> sqrt(n) * slamch('Epsilon') to determine if the error
  281. *> estimate is "guaranteed". These reciprocal condition
  282. *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
  283. *> appropriately scaled matrix Z.
  284. *> Let Z = S*(A*diag(x)), where x is the solution for the
  285. *> current right-hand side and S scales each row of
  286. *> A*diag(x) by a power of the radix so all absolute row
  287. *> sums of Z are approximately 1.
  288. *>
  289. *> This subroutine is only responsible for setting the second field
  290. *> above.
  291. *> See Lapack Working Note 165 for further details and extra
  292. *> cautions.
  293. *> \endverbatim
  294. *>
  295. *> \param[in] RES
  296. *> \verbatim
  297. *> RES is REAL array, dimension (N)
  298. *> Workspace to hold the intermediate residual.
  299. *> \endverbatim
  300. *>
  301. *> \param[in] AYB
  302. *> \verbatim
  303. *> AYB is REAL array, dimension (N)
  304. *> Workspace. This can be the same workspace passed for Y_TAIL.
  305. *> \endverbatim
  306. *>
  307. *> \param[in] DY
  308. *> \verbatim
  309. *> DY is REAL array, dimension (N)
  310. *> Workspace to hold the intermediate solution.
  311. *> \endverbatim
  312. *>
  313. *> \param[in] Y_TAIL
  314. *> \verbatim
  315. *> Y_TAIL is REAL array, dimension (N)
  316. *> Workspace to hold the trailing bits of the intermediate solution.
  317. *> \endverbatim
  318. *>
  319. *> \param[in] RCOND
  320. *> \verbatim
  321. *> RCOND is REAL
  322. *> Reciprocal scaled condition number. This is an estimate of the
  323. *> reciprocal Skeel condition number of the matrix A after
  324. *> equilibration (if done). If this is less than the machine
  325. *> precision (in particular, if it is zero), the matrix is singular
  326. *> to working precision. Note that the error may still be small even
  327. *> if this number is very small and the matrix appears ill-
  328. *> conditioned.
  329. *> \endverbatim
  330. *>
  331. *> \param[in] ITHRESH
  332. *> \verbatim
  333. *> ITHRESH is INTEGER
  334. *> The maximum number of residual computations allowed for
  335. *> refinement. The default is 10. For 'aggressive' set to 100 to
  336. *> permit convergence using approximate factorizations or
  337. *> factorizations other than LU. If the factorization uses a
  338. *> technique other than Gaussian elimination, the guarantees in
  339. *> ERRS_N and ERRS_C may no longer be trustworthy.
  340. *> \endverbatim
  341. *>
  342. *> \param[in] RTHRESH
  343. *> \verbatim
  344. *> RTHRESH is REAL
  345. *> Determines when to stop refinement if the error estimate stops
  346. *> decreasing. Refinement will stop when the next solution no longer
  347. *> satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
  348. *> the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
  349. *> default value is 0.5. For 'aggressive' set to 0.9 to permit
  350. *> convergence on extremely ill-conditioned matrices. See LAWN 165
  351. *> for more details.
  352. *> \endverbatim
  353. *>
  354. *> \param[in] DZ_UB
  355. *> \verbatim
  356. *> DZ_UB is REAL
  357. *> Determines when to start considering componentwise convergence.
  358. *> Componentwise convergence is only considered after each component
  359. *> of the solution Y is stable, which we define as the relative
  360. *> change in each component being less than DZ_UB. The default value
  361. *> is 0.25, requiring the first bit to be stable. See LAWN 165 for
  362. *> more details.
  363. *> \endverbatim
  364. *>
  365. *> \param[in] IGNORE_CWISE
  366. *> \verbatim
  367. *> IGNORE_CWISE is LOGICAL
  368. *> If .TRUE. then ignore componentwise convergence. Default value
  369. *> is .FALSE..
  370. *> \endverbatim
  371. *>
  372. *> \param[out] INFO
  373. *> \verbatim
  374. *> INFO is INTEGER
  375. *> = 0: Successful exit.
  376. *> < 0: if INFO = -i, the ith argument to SGETRS had an illegal
  377. *> value
  378. *> \endverbatim
  379. *
  380. * Authors:
  381. * ========
  382. *
  383. *> \author Univ. of Tennessee
  384. *> \author Univ. of California Berkeley
  385. *> \author Univ. of Colorado Denver
  386. *> \author NAG Ltd.
  387. *
  388. *> \ingroup realGEcomputational
  389. *
  390. * =====================================================================
  391. SUBROUTINE SLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
  392. $ LDA, AF, LDAF, IPIV, COLEQU, C, B,
  393. $ LDB, Y, LDY, BERR_OUT, N_NORMS,
  394. $ ERRS_N, ERRS_C, RES,
  395. $ AYB, DY, Y_TAIL, RCOND, ITHRESH,
  396. $ RTHRESH, DZ_UB, IGNORE_CWISE,
  397. $ INFO )
  398. *
  399. * -- LAPACK computational routine --
  400. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  401. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  402. *
  403. * .. Scalar Arguments ..
  404. INTEGER INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
  405. $ TRANS_TYPE, N_NORMS, ITHRESH
  406. LOGICAL COLEQU, IGNORE_CWISE
  407. REAL RTHRESH, DZ_UB
  408. * ..
  409. * .. Array Arguments ..
  410. INTEGER IPIV( * )
  411. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  412. $ Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
  413. REAL C( * ), AYB( * ), RCOND, BERR_OUT( * ),
  414. $ ERRS_N( NRHS, * ),
  415. $ ERRS_C( NRHS, * )
  416. * ..
  417. *
  418. * =====================================================================
  419. *
  420. * .. Local Scalars ..
  421. CHARACTER TRANS
  422. INTEGER CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
  423. REAL YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
  424. $ DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
  425. $ DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
  426. $ EPS, HUGEVAL, INCR_THRESH
  427. LOGICAL INCR_PREC
  428. * ..
  429. * .. Parameters ..
  430. INTEGER UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
  431. $ NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
  432. $ EXTRA_Y
  433. PARAMETER ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
  434. $ CONV_STATE = 2, NOPROG_STATE = 3 )
  435. PARAMETER ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
  436. $ EXTRA_Y = 2 )
  437. INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
  438. INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
  439. INTEGER CMP_ERR_I, PIV_GROWTH_I
  440. PARAMETER ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
  441. $ BERR_I = 3 )
  442. PARAMETER ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
  443. PARAMETER ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
  444. $ PIV_GROWTH_I = 9 )
  445. INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
  446. $ LA_LINRX_CWISE_I
  447. PARAMETER ( LA_LINRX_ITREF_I = 1,
  448. $ LA_LINRX_ITHRESH_I = 2 )
  449. PARAMETER ( LA_LINRX_CWISE_I = 3 )
  450. INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
  451. $ LA_LINRX_RCOND_I
  452. PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
  453. PARAMETER ( LA_LINRX_RCOND_I = 3 )
  454. * ..
  455. * .. External Subroutines ..
  456. EXTERNAL SAXPY, SCOPY, SGETRS, SGEMV, BLAS_SGEMV_X,
  457. $ BLAS_SGEMV2_X, SLA_GEAMV, SLA_WWADDW, SLAMCH,
  458. $ CHLA_TRANSTYPE, SLA_LIN_BERR
  459. REAL SLAMCH
  460. CHARACTER CHLA_TRANSTYPE
  461. * ..
  462. * .. Intrinsic Functions ..
  463. INTRINSIC ABS, MAX, MIN
  464. * ..
  465. * .. Executable Statements ..
  466. *
  467. IF ( INFO.NE.0 ) RETURN
  468. TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
  469. EPS = SLAMCH( 'Epsilon' )
  470. HUGEVAL = SLAMCH( 'Overflow' )
  471. * Force HUGEVAL to Inf
  472. HUGEVAL = HUGEVAL * HUGEVAL
  473. * Using HUGEVAL may lead to spurious underflows.
  474. INCR_THRESH = REAL( N ) * EPS
  475. *
  476. DO J = 1, NRHS
  477. Y_PREC_STATE = EXTRA_RESIDUAL
  478. IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
  479. DO I = 1, N
  480. Y_TAIL( I ) = 0.0
  481. END DO
  482. END IF
  483. DXRAT = 0.0
  484. DXRATMAX = 0.0
  485. DZRAT = 0.0
  486. DZRATMAX = 0.0
  487. FINAL_DX_X = HUGEVAL
  488. FINAL_DZ_Z = HUGEVAL
  489. PREVNORMDX = HUGEVAL
  490. PREV_DZ_Z = HUGEVAL
  491. DZ_Z = HUGEVAL
  492. DX_X = HUGEVAL
  493. X_STATE = WORKING_STATE
  494. Z_STATE = UNSTABLE_STATE
  495. INCR_PREC = .FALSE.
  496. DO CNT = 1, ITHRESH
  497. *
  498. * Compute residual RES = B_s - op(A_s) * Y,
  499. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  500. *
  501. CALL SCOPY( N, B( 1, J ), 1, RES, 1 )
  502. IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
  503. CALL SGEMV( TRANS, N, N, -1.0, A, LDA, Y( 1, J ), 1,
  504. $ 1.0, RES, 1 )
  505. ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
  506. CALL BLAS_SGEMV_X( TRANS_TYPE, N, N, -1.0, A, LDA,
  507. $ Y( 1, J ), 1, 1.0, RES, 1, PREC_TYPE )
  508. ELSE
  509. CALL BLAS_SGEMV2_X( TRANS_TYPE, N, N, -1.0, A, LDA,
  510. $ Y( 1, J ), Y_TAIL, 1, 1.0, RES, 1, PREC_TYPE )
  511. END IF
  512. ! XXX: RES is no longer needed.
  513. CALL SCOPY( N, RES, 1, DY, 1 )
  514. CALL SGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
  515. *
  516. * Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
  517. *
  518. NORMX = 0.0
  519. NORMY = 0.0
  520. NORMDX = 0.0
  521. DZ_Z = 0.0
  522. YMIN = HUGEVAL
  523. *
  524. DO I = 1, N
  525. YK = ABS( Y( I, J ) )
  526. DYK = ABS( DY( I ) )
  527. IF ( YK .NE. 0.0 ) THEN
  528. DZ_Z = MAX( DZ_Z, DYK / YK )
  529. ELSE IF ( DYK .NE. 0.0 ) THEN
  530. DZ_Z = HUGEVAL
  531. END IF
  532. YMIN = MIN( YMIN, YK )
  533. NORMY = MAX( NORMY, YK )
  534. IF ( COLEQU ) THEN
  535. NORMX = MAX( NORMX, YK * C( I ) )
  536. NORMDX = MAX( NORMDX, DYK * C( I ) )
  537. ELSE
  538. NORMX = NORMY
  539. NORMDX = MAX( NORMDX, DYK )
  540. END IF
  541. END DO
  542. IF ( NORMX .NE. 0.0 ) THEN
  543. DX_X = NORMDX / NORMX
  544. ELSE IF ( NORMDX .EQ. 0.0 ) THEN
  545. DX_X = 0.0
  546. ELSE
  547. DX_X = HUGEVAL
  548. END IF
  549. DXRAT = NORMDX / PREVNORMDX
  550. DZRAT = DZ_Z / PREV_DZ_Z
  551. *
  552. * Check termination criteria
  553. *
  554. IF (.NOT.IGNORE_CWISE
  555. $ .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
  556. $ .AND. Y_PREC_STATE .LT. EXTRA_Y)
  557. $ INCR_PREC = .TRUE.
  558. IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
  559. $ X_STATE = WORKING_STATE
  560. IF ( X_STATE .EQ. WORKING_STATE ) THEN
  561. IF ( DX_X .LE. EPS ) THEN
  562. X_STATE = CONV_STATE
  563. ELSE IF ( DXRAT .GT. RTHRESH ) THEN
  564. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  565. INCR_PREC = .TRUE.
  566. ELSE
  567. X_STATE = NOPROG_STATE
  568. END IF
  569. ELSE
  570. IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
  571. END IF
  572. IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
  573. END IF
  574. IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
  575. $ Z_STATE = WORKING_STATE
  576. IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
  577. $ Z_STATE = WORKING_STATE
  578. IF ( Z_STATE .EQ. WORKING_STATE ) THEN
  579. IF ( DZ_Z .LE. EPS ) THEN
  580. Z_STATE = CONV_STATE
  581. ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
  582. Z_STATE = UNSTABLE_STATE
  583. DZRATMAX = 0.0
  584. FINAL_DZ_Z = HUGEVAL
  585. ELSE IF ( DZRAT .GT. RTHRESH ) THEN
  586. IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
  587. INCR_PREC = .TRUE.
  588. ELSE
  589. Z_STATE = NOPROG_STATE
  590. END IF
  591. ELSE
  592. IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
  593. END IF
  594. IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  595. END IF
  596. *
  597. * Exit if both normwise and componentwise stopped working,
  598. * but if componentwise is unstable, let it go at least two
  599. * iterations.
  600. *
  601. IF ( X_STATE.NE.WORKING_STATE ) THEN
  602. IF ( IGNORE_CWISE) GOTO 666
  603. IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
  604. $ GOTO 666
  605. IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
  606. END IF
  607. IF ( INCR_PREC ) THEN
  608. INCR_PREC = .FALSE.
  609. Y_PREC_STATE = Y_PREC_STATE + 1
  610. DO I = 1, N
  611. Y_TAIL( I ) = 0.0
  612. END DO
  613. END IF
  614. PREVNORMDX = NORMDX
  615. PREV_DZ_Z = DZ_Z
  616. *
  617. * Update solution.
  618. *
  619. IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
  620. CALL SAXPY( N, 1.0, DY, 1, Y( 1, J ), 1 )
  621. ELSE
  622. CALL SLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
  623. END IF
  624. END DO
  625. * Target of "IF (Z_STOP .AND. X_STOP)". Sun's f77 won't EXIT.
  626. 666 CONTINUE
  627. *
  628. * Set final_* when cnt hits ithresh.
  629. *
  630. IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
  631. IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
  632. *
  633. * Compute error bounds
  634. *
  635. IF (N_NORMS .GE. 1) THEN
  636. ERRS_N( J, LA_LINRX_ERR_I ) =
  637. $ FINAL_DX_X / (1 - DXRATMAX)
  638. END IF
  639. IF ( N_NORMS .GE. 2 ) THEN
  640. ERRS_C( J, LA_LINRX_ERR_I ) =
  641. $ FINAL_DZ_Z / (1 - DZRATMAX)
  642. END IF
  643. *
  644. * Compute componentwise relative backward error from formula
  645. * max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
  646. * where abs(Z) is the componentwise absolute value of the matrix
  647. * or vector Z.
  648. *
  649. * Compute residual RES = B_s - op(A_s) * Y,
  650. * op(A) = A, A**T, or A**H depending on TRANS (and type).
  651. *
  652. CALL SCOPY( N, B( 1, J ), 1, RES, 1 )
  653. CALL SGEMV( TRANS, N, N, -1.0, A, LDA, Y(1,J), 1, 1.0, RES, 1 )
  654. DO I = 1, N
  655. AYB( I ) = ABS( B( I, J ) )
  656. END DO
  657. *
  658. * Compute abs(op(A_s))*abs(Y) + abs(B_s).
  659. *
  660. CALL SLA_GEAMV ( TRANS_TYPE, N, N, 1.0,
  661. $ A, LDA, Y(1, J), 1, 1.0, AYB, 1 )
  662. CALL SLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
  663. *
  664. * End of loop for each RHS.
  665. *
  666. END DO
  667. *
  668. RETURN
  669. *
  670. * End of SLA_GERFSX_EXTENDED
  671. *
  672. END