You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgerfs.f 13 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. *> \brief \b SGERFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGERFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgerfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgerfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgerfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  22. * X, LDX, FERR, BERR, WORK, IWORK, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER TRANS
  26. * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  27. * ..
  28. * .. Array Arguments ..
  29. * INTEGER IPIV( * ), IWORK( * )
  30. * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  31. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> SGERFS improves the computed solution to a system of linear
  41. *> equations and provides error bounds and backward error estimates for
  42. *> the solution.
  43. *> \endverbatim
  44. *
  45. * Arguments:
  46. * ==========
  47. *
  48. *> \param[in] TRANS
  49. *> \verbatim
  50. *> TRANS is CHARACTER*1
  51. *> Specifies the form of the system of equations:
  52. *> = 'N': A * X = B (No transpose)
  53. *> = 'T': A**T * X = B (Transpose)
  54. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The order of the matrix A. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] NRHS
  64. *> \verbatim
  65. *> NRHS is INTEGER
  66. *> The number of right hand sides, i.e., the number of columns
  67. *> of the matrices B and X. NRHS >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] A
  71. *> \verbatim
  72. *> A is REAL array, dimension (LDA,N)
  73. *> The original N-by-N matrix A.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the array A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[in] AF
  83. *> \verbatim
  84. *> AF is REAL array, dimension (LDAF,N)
  85. *> The factors L and U from the factorization A = P*L*U
  86. *> as computed by SGETRF.
  87. *> \endverbatim
  88. *>
  89. *> \param[in] LDAF
  90. *> \verbatim
  91. *> LDAF is INTEGER
  92. *> The leading dimension of the array AF. LDAF >= max(1,N).
  93. *> \endverbatim
  94. *>
  95. *> \param[in] IPIV
  96. *> \verbatim
  97. *> IPIV is INTEGER array, dimension (N)
  98. *> The pivot indices from SGETRF; for 1<=i<=N, row i of the
  99. *> matrix was interchanged with row IPIV(i).
  100. *> \endverbatim
  101. *>
  102. *> \param[in] B
  103. *> \verbatim
  104. *> B is REAL array, dimension (LDB,NRHS)
  105. *> The right hand side matrix B.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDB
  109. *> \verbatim
  110. *> LDB is INTEGER
  111. *> The leading dimension of the array B. LDB >= max(1,N).
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] X
  115. *> \verbatim
  116. *> X is REAL array, dimension (LDX,NRHS)
  117. *> On entry, the solution matrix X, as computed by SGETRS.
  118. *> On exit, the improved solution matrix X.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDX
  122. *> \verbatim
  123. *> LDX is INTEGER
  124. *> The leading dimension of the array X. LDX >= max(1,N).
  125. *> \endverbatim
  126. *>
  127. *> \param[out] FERR
  128. *> \verbatim
  129. *> FERR is REAL array, dimension (NRHS)
  130. *> The estimated forward error bound for each solution vector
  131. *> X(j) (the j-th column of the solution matrix X).
  132. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  133. *> is an estimated upper bound for the magnitude of the largest
  134. *> element in (X(j) - XTRUE) divided by the magnitude of the
  135. *> largest element in X(j). The estimate is as reliable as
  136. *> the estimate for RCOND, and is almost always a slight
  137. *> overestimate of the true error.
  138. *> \endverbatim
  139. *>
  140. *> \param[out] BERR
  141. *> \verbatim
  142. *> BERR is REAL array, dimension (NRHS)
  143. *> The componentwise relative backward error of each solution
  144. *> vector X(j) (i.e., the smallest relative change in
  145. *> any element of A or B that makes X(j) an exact solution).
  146. *> \endverbatim
  147. *>
  148. *> \param[out] WORK
  149. *> \verbatim
  150. *> WORK is REAL array, dimension (3*N)
  151. *> \endverbatim
  152. *>
  153. *> \param[out] IWORK
  154. *> \verbatim
  155. *> IWORK is INTEGER array, dimension (N)
  156. *> \endverbatim
  157. *>
  158. *> \param[out] INFO
  159. *> \verbatim
  160. *> INFO is INTEGER
  161. *> = 0: successful exit
  162. *> < 0: if INFO = -i, the i-th argument had an illegal value
  163. *> \endverbatim
  164. *
  165. *> \par Internal Parameters:
  166. * =========================
  167. *>
  168. *> \verbatim
  169. *> ITMAX is the maximum number of steps of iterative refinement.
  170. *> \endverbatim
  171. *
  172. * Authors:
  173. * ========
  174. *
  175. *> \author Univ. of Tennessee
  176. *> \author Univ. of California Berkeley
  177. *> \author Univ. of Colorado Denver
  178. *> \author NAG Ltd.
  179. *
  180. *> \ingroup realGEcomputational
  181. *
  182. * =====================================================================
  183. SUBROUTINE SGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB,
  184. $ X, LDX, FERR, BERR, WORK, IWORK, INFO )
  185. *
  186. * -- LAPACK computational routine --
  187. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  188. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  189. *
  190. * .. Scalar Arguments ..
  191. CHARACTER TRANS
  192. INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS
  193. * ..
  194. * .. Array Arguments ..
  195. INTEGER IPIV( * ), IWORK( * )
  196. REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
  197. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  198. * ..
  199. *
  200. * =====================================================================
  201. *
  202. * .. Parameters ..
  203. INTEGER ITMAX
  204. PARAMETER ( ITMAX = 5 )
  205. REAL ZERO
  206. PARAMETER ( ZERO = 0.0E+0 )
  207. REAL ONE
  208. PARAMETER ( ONE = 1.0E+0 )
  209. REAL TWO
  210. PARAMETER ( TWO = 2.0E+0 )
  211. REAL THREE
  212. PARAMETER ( THREE = 3.0E+0 )
  213. * ..
  214. * .. Local Scalars ..
  215. LOGICAL NOTRAN
  216. CHARACTER TRANST
  217. INTEGER COUNT, I, J, K, KASE, NZ
  218. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  219. * ..
  220. * .. Local Arrays ..
  221. INTEGER ISAVE( 3 )
  222. * ..
  223. * .. External Subroutines ..
  224. EXTERNAL SAXPY, SCOPY, SGEMV, SGETRS, SLACN2, XERBLA
  225. * ..
  226. * .. Intrinsic Functions ..
  227. INTRINSIC ABS, MAX
  228. * ..
  229. * .. External Functions ..
  230. LOGICAL LSAME
  231. REAL SLAMCH
  232. EXTERNAL LSAME, SLAMCH
  233. * ..
  234. * .. Executable Statements ..
  235. *
  236. * Test the input parameters.
  237. *
  238. INFO = 0
  239. NOTRAN = LSAME( TRANS, 'N' )
  240. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  241. $ LSAME( TRANS, 'C' ) ) THEN
  242. INFO = -1
  243. ELSE IF( N.LT.0 ) THEN
  244. INFO = -2
  245. ELSE IF( NRHS.LT.0 ) THEN
  246. INFO = -3
  247. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  248. INFO = -5
  249. ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
  250. INFO = -7
  251. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  252. INFO = -10
  253. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  254. INFO = -12
  255. END IF
  256. IF( INFO.NE.0 ) THEN
  257. CALL XERBLA( 'SGERFS', -INFO )
  258. RETURN
  259. END IF
  260. *
  261. * Quick return if possible
  262. *
  263. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  264. DO 10 J = 1, NRHS
  265. FERR( J ) = ZERO
  266. BERR( J ) = ZERO
  267. 10 CONTINUE
  268. RETURN
  269. END IF
  270. *
  271. IF( NOTRAN ) THEN
  272. TRANST = 'T'
  273. ELSE
  274. TRANST = 'N'
  275. END IF
  276. *
  277. * NZ = maximum number of nonzero elements in each row of A, plus 1
  278. *
  279. NZ = N + 1
  280. EPS = SLAMCH( 'Epsilon' )
  281. SAFMIN = SLAMCH( 'Safe minimum' )
  282. SAFE1 = NZ*SAFMIN
  283. SAFE2 = SAFE1 / EPS
  284. *
  285. * Do for each right hand side
  286. *
  287. DO 140 J = 1, NRHS
  288. *
  289. COUNT = 1
  290. LSTRES = THREE
  291. 20 CONTINUE
  292. *
  293. * Loop until stopping criterion is satisfied.
  294. *
  295. * Compute residual R = B - op(A) * X,
  296. * where op(A) = A, A**T, or A**H, depending on TRANS.
  297. *
  298. CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  299. CALL SGEMV( TRANS, N, N, -ONE, A, LDA, X( 1, J ), 1, ONE,
  300. $ WORK( N+1 ), 1 )
  301. *
  302. * Compute componentwise relative backward error from formula
  303. *
  304. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  305. *
  306. * where abs(Z) is the componentwise absolute value of the matrix
  307. * or vector Z. If the i-th component of the denominator is less
  308. * than SAFE2, then SAFE1 is added to the i-th components of the
  309. * numerator and denominator before dividing.
  310. *
  311. DO 30 I = 1, N
  312. WORK( I ) = ABS( B( I, J ) )
  313. 30 CONTINUE
  314. *
  315. * Compute abs(op(A))*abs(X) + abs(B).
  316. *
  317. IF( NOTRAN ) THEN
  318. DO 50 K = 1, N
  319. XK = ABS( X( K, J ) )
  320. DO 40 I = 1, N
  321. WORK( I ) = WORK( I ) + ABS( A( I, K ) )*XK
  322. 40 CONTINUE
  323. 50 CONTINUE
  324. ELSE
  325. DO 70 K = 1, N
  326. S = ZERO
  327. DO 60 I = 1, N
  328. S = S + ABS( A( I, K ) )*ABS( X( I, J ) )
  329. 60 CONTINUE
  330. WORK( K ) = WORK( K ) + S
  331. 70 CONTINUE
  332. END IF
  333. S = ZERO
  334. DO 80 I = 1, N
  335. IF( WORK( I ).GT.SAFE2 ) THEN
  336. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  337. ELSE
  338. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  339. $ ( WORK( I )+SAFE1 ) )
  340. END IF
  341. 80 CONTINUE
  342. BERR( J ) = S
  343. *
  344. * Test stopping criterion. Continue iterating if
  345. * 1) The residual BERR(J) is larger than machine epsilon, and
  346. * 2) BERR(J) decreased by at least a factor of 2 during the
  347. * last iteration, and
  348. * 3) At most ITMAX iterations tried.
  349. *
  350. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  351. $ COUNT.LE.ITMAX ) THEN
  352. *
  353. * Update solution and try again.
  354. *
  355. CALL SGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  356. $ INFO )
  357. CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  358. LSTRES = BERR( J )
  359. COUNT = COUNT + 1
  360. GO TO 20
  361. END IF
  362. *
  363. * Bound error from formula
  364. *
  365. * norm(X - XTRUE) / norm(X) .le. FERR =
  366. * norm( abs(inv(op(A)))*
  367. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  368. *
  369. * where
  370. * norm(Z) is the magnitude of the largest component of Z
  371. * inv(op(A)) is the inverse of op(A)
  372. * abs(Z) is the componentwise absolute value of the matrix or
  373. * vector Z
  374. * NZ is the maximum number of nonzeros in any row of A, plus 1
  375. * EPS is machine epsilon
  376. *
  377. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  378. * is incremented by SAFE1 if the i-th component of
  379. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  380. *
  381. * Use SLACN2 to estimate the infinity-norm of the matrix
  382. * inv(op(A)) * diag(W),
  383. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  384. *
  385. DO 90 I = 1, N
  386. IF( WORK( I ).GT.SAFE2 ) THEN
  387. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  388. ELSE
  389. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  390. END IF
  391. 90 CONTINUE
  392. *
  393. KASE = 0
  394. 100 CONTINUE
  395. CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  396. $ KASE, ISAVE )
  397. IF( KASE.NE.0 ) THEN
  398. IF( KASE.EQ.1 ) THEN
  399. *
  400. * Multiply by diag(W)*inv(op(A)**T).
  401. *
  402. CALL SGETRS( TRANST, N, 1, AF, LDAF, IPIV, WORK( N+1 ),
  403. $ N, INFO )
  404. DO 110 I = 1, N
  405. WORK( N+I ) = WORK( I )*WORK( N+I )
  406. 110 CONTINUE
  407. ELSE
  408. *
  409. * Multiply by inv(op(A))*diag(W).
  410. *
  411. DO 120 I = 1, N
  412. WORK( N+I ) = WORK( I )*WORK( N+I )
  413. 120 CONTINUE
  414. CALL SGETRS( TRANS, N, 1, AF, LDAF, IPIV, WORK( N+1 ), N,
  415. $ INFO )
  416. END IF
  417. GO TO 100
  418. END IF
  419. *
  420. * Normalize error.
  421. *
  422. LSTRES = ZERO
  423. DO 130 I = 1, N
  424. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  425. 130 CONTINUE
  426. IF( LSTRES.NE.ZERO )
  427. $ FERR( J ) = FERR( J ) / LSTRES
  428. *
  429. 140 CONTINUE
  430. *
  431. RETURN
  432. *
  433. * End of SGERFS
  434. *
  435. END