You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgemlq.f 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297
  1. *> \brief \b SGEMLQ
  2. *
  3. * Definition:
  4. * ===========
  5. *
  6. * SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T,
  7. * $ TSIZE, C, LDC, WORK, LWORK, INFO )
  8. *
  9. *
  10. * .. Scalar Arguments ..
  11. * CHARACTER SIDE, TRANS
  12. * INTEGER INFO, LDA, M, N, K, LDT, TSIZE, LWORK, LDC
  13. * ..
  14. * .. Array Arguments ..
  15. * REAL A( LDA, * ), T( * ), C(LDC, * ), WORK( * )
  16. * ..
  17. *
  18. *> \par Purpose:
  19. * =============
  20. *>
  21. *> \verbatim
  22. *>
  23. *> SGEMLQ overwrites the general real M-by-N matrix C with
  24. *>
  25. *> SIDE = 'L' SIDE = 'R'
  26. *> TRANS = 'N': Q * C C * Q
  27. *> TRANS = 'T': Q**T * C C * Q**T
  28. *> where Q is a real orthogonal matrix defined as the product
  29. *> of blocked elementary reflectors computed by short wide LQ
  30. *> factorization (SGELQ)
  31. *>
  32. *> \endverbatim
  33. *
  34. * Arguments:
  35. * ==========
  36. *
  37. *> \param[in] SIDE
  38. *> \verbatim
  39. *> SIDE is CHARACTER*1
  40. *> = 'L': apply Q or Q**T from the Left;
  41. *> = 'R': apply Q or Q**T from the Right.
  42. *> \endverbatim
  43. *>
  44. *> \param[in] TRANS
  45. *> \verbatim
  46. *> TRANS is CHARACTER*1
  47. *> = 'N': No transpose, apply Q;
  48. *> = 'T': Transpose, apply Q**T.
  49. *> \endverbatim
  50. *>
  51. *> \param[in] M
  52. *> \verbatim
  53. *> M is INTEGER
  54. *> The number of rows of the matrix A. M >=0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] N
  58. *> \verbatim
  59. *> N is INTEGER
  60. *> The number of columns of the matrix C. N >= 0.
  61. *> \endverbatim
  62. *>
  63. *> \param[in] K
  64. *> \verbatim
  65. *> K is INTEGER
  66. *> The number of elementary reflectors whose product defines
  67. *> the matrix Q.
  68. *> If SIDE = 'L', M >= K >= 0;
  69. *> if SIDE = 'R', N >= K >= 0.
  70. *> \endverbatim
  71. *>
  72. *> \param[in] A
  73. *> \verbatim
  74. *> A is REAL array, dimension
  75. *> (LDA,M) if SIDE = 'L',
  76. *> (LDA,N) if SIDE = 'R'
  77. *> Part of the data structure to represent Q as returned by DGELQ.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] LDA
  81. *> \verbatim
  82. *> LDA is INTEGER
  83. *> The leading dimension of the array A. LDA >= max(1,K).
  84. *> \endverbatim
  85. *>
  86. *> \param[in] T
  87. *> \verbatim
  88. *> T is REAL array, dimension (MAX(5,TSIZE)).
  89. *> Part of the data structure to represent Q as returned by SGELQ.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] TSIZE
  93. *> \verbatim
  94. *> TSIZE is INTEGER
  95. *> The dimension of the array T. TSIZE >= 5.
  96. *> \endverbatim
  97. *>
  98. *> \param[in,out] C
  99. *> \verbatim
  100. *> C is REAL array, dimension (LDC,N)
  101. *> On entry, the M-by-N matrix C.
  102. *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDC
  106. *> \verbatim
  107. *> LDC is INTEGER
  108. *> The leading dimension of the array C. LDC >= max(1,M).
  109. *> \endverbatim
  110. *>
  111. *> \param[out] WORK
  112. *> \verbatim
  113. *> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
  114. *> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] LWORK
  118. *> \verbatim
  119. *> LWORK is INTEGER
  120. *> The dimension of the array WORK. LWORK >= 1.
  121. *> If LWORK = -1, then a workspace query is assumed. The routine
  122. *> only calculates the size of the WORK array, returns this
  123. *> value as WORK(1), and no error message related to WORK
  124. *> is issued by XERBLA.
  125. *> \endverbatim
  126. *>
  127. *> \param[out] INFO
  128. *> \verbatim
  129. *> INFO is INTEGER
  130. *> = 0: successful exit
  131. *> < 0: if INFO = -i, the i-th argument had an illegal value
  132. *> \endverbatim
  133. *
  134. * Authors:
  135. * ========
  136. *
  137. *> \author Univ. of Tennessee
  138. *> \author Univ. of California Berkeley
  139. *> \author Univ. of Colorado Denver
  140. *> \author NAG Ltd.
  141. *
  142. *> \par Further Details
  143. * ====================
  144. *>
  145. *> \verbatim
  146. *>
  147. *> These details are particular for this LAPACK implementation. Users should not
  148. *> take them for granted. These details may change in the future, and are not likely
  149. *> true for another LAPACK implementation. These details are relevant if one wants
  150. *> to try to understand the code. They are not part of the interface.
  151. *>
  152. *> In this version,
  153. *>
  154. *> T(2): row block size (MB)
  155. *> T(3): column block size (NB)
  156. *> T(6:TSIZE): data structure needed for Q, computed by
  157. *> SLASWLQ or SGELQT
  158. *>
  159. *> Depending on the matrix dimensions M and N, and row and column
  160. *> block sizes MB and NB returned by ILAENV, SGELQ will use either
  161. *> SLASWLQ (if the matrix is wide-and-short) or SGELQT to compute
  162. *> the LQ factorization.
  163. *> This version of SGEMLQ will use either SLAMSWLQ or SGEMLQT to
  164. *> multiply matrix Q by another matrix.
  165. *> Further Details in SLAMSWLQ or SGEMLQT.
  166. *> \endverbatim
  167. *>
  168. *> \ingroup gemlq
  169. *>
  170. * =====================================================================
  171. SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE,
  172. $ C, LDC, WORK, LWORK, INFO )
  173. *
  174. * -- LAPACK computational routine --
  175. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  176. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  177. *
  178. * .. Scalar Arguments ..
  179. CHARACTER SIDE, TRANS
  180. INTEGER INFO, LDA, M, N, K, TSIZE, LWORK, LDC
  181. * ..
  182. * .. Array Arguments ..
  183. REAL A( LDA, * ), T( * ), C( LDC, * ), WORK( * )
  184. * ..
  185. *
  186. * =====================================================================
  187. *
  188. * ..
  189. * .. Local Scalars ..
  190. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
  191. INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN
  192. * ..
  193. * .. External Functions ..
  194. LOGICAL LSAME
  195. EXTERNAL LSAME
  196. * ..
  197. * .. External Functions ..
  198. REAL SROUNDUP_LWORK
  199. EXTERNAL SROUNDUP_LWORK
  200. * ..
  201. * .. External Subroutines ..
  202. EXTERNAL SLAMSWLQ, SGEMLQT, XERBLA
  203. * ..
  204. * .. Intrinsic Functions ..
  205. INTRINSIC INT, MAX, MIN, MOD
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. * Test the input arguments
  210. *
  211. LQUERY = ( LWORK.EQ.-1 )
  212. NOTRAN = LSAME( TRANS, 'N' )
  213. TRAN = LSAME( TRANS, 'T' )
  214. LEFT = LSAME( SIDE, 'L' )
  215. RIGHT = LSAME( SIDE, 'R' )
  216. *
  217. MB = INT( T( 2 ) )
  218. NB = INT( T( 3 ) )
  219. IF( LEFT ) THEN
  220. LW = N * MB
  221. MN = M
  222. ELSE
  223. LW = M * MB
  224. MN = N
  225. END IF
  226. *
  227. MINMNK = MIN( M, N, K )
  228. IF( MINMNK.EQ.0 ) THEN
  229. LWMIN = 1
  230. ELSE
  231. LWMIN = MAX( 1, LW )
  232. END IF
  233. *
  234. IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN
  235. IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN
  236. NBLCKS = ( MN - K ) / ( NB - K )
  237. ELSE
  238. NBLCKS = ( MN - K ) / ( NB - K ) + 1
  239. END IF
  240. ELSE
  241. NBLCKS = 1
  242. END IF
  243. *
  244. INFO = 0
  245. IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
  246. INFO = -1
  247. ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
  248. INFO = -2
  249. ELSE IF( M.LT.0 ) THEN
  250. INFO = -3
  251. ELSE IF( N.LT.0 ) THEN
  252. INFO = -4
  253. ELSE IF( K.LT.0 .OR. K.GT.MN ) THEN
  254. INFO = -5
  255. ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
  256. INFO = -7
  257. ELSE IF( TSIZE.LT.5 ) THEN
  258. INFO = -9
  259. ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
  260. INFO = -11
  261. ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  262. INFO = -13
  263. END IF
  264. *
  265. IF( INFO.EQ.0 ) THEN
  266. WORK( 1 ) = SROUNDUP_LWORK( LWMIN )
  267. END IF
  268. *
  269. IF( INFO.NE.0 ) THEN
  270. CALL XERBLA( 'SGEMLQ', -INFO )
  271. RETURN
  272. ELSE IF( LQUERY ) THEN
  273. RETURN
  274. END IF
  275. *
  276. * Quick return if possible
  277. *
  278. IF( MINMNK.EQ.0 ) THEN
  279. RETURN
  280. END IF
  281. *
  282. IF( ( LEFT .AND. M.LE.K ) .OR. ( RIGHT .AND. N.LE.K )
  283. $ .OR. ( NB.LE.K ) .OR. ( NB.GE.MAX( M, N, K ) ) ) THEN
  284. CALL SGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA,
  285. $ T( 6 ), MB, C, LDC, WORK, INFO )
  286. ELSE
  287. CALL SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T( 6 ),
  288. $ MB, C, LDC, WORK, LWORK, INFO )
  289. END IF
  290. *
  291. WORK( 1 ) = SROUNDUP_LWORK( LWMIN )
  292. *
  293. RETURN
  294. *
  295. * End of SGEMLQ
  296. *
  297. END